On the Analysis of Quantile Forward Regression

Hongqi Chen†

November 2022

Abstract

In this paper, we study the theoretical properties of K-step and t-threshold quantile forward regressions in a linear quantile regression model with high-dimensional covariates. The model under our investigation is assumed potentially misspecified and we consider the best sparse approximation using quantile forward regressions. We provide non-asymptotic prediction bounds for both methods, and show asymptotic convergence results and the asymptotic efficacy of K-step quantile forward regression. In our asymptotic framework, we allow the number of covariates and the number of steps to diverge at different rates with the sample size. We demonstrate superior finite sample performance of quantile forward regressions to commonly-used penalization methods in terms of prediction accuracy and variable selection through extensive Monte Carlo simulations. We illustrate the usage of quantile forward regressions by two empirical applications: growth-at-risk forecasting and testing the convergence hypothesis of international economic growth.

Keywords: Forward regression; High dimensionality; Quantile regression

JEL classification: C01, C21, C61
1 Introduction

In econometrics and statistics, quantile regression plays an important role in the characterization of the conditional distribution of a response variable by a combination of many independent variables. It is a useful tool to analyze the heterogeneity of the data or to evaluate the potential distributional risks of research interests. Since the seminal work by Koenker and Bassett (1978), extensive studies have been devoted to advancing the theory of quantile regression. Several excellent references, e.g., Koenker (2005), Koenker et al. (2017), and Koenker (2017), summarize this development with other related topics. In the past four decades, quantile regression has been widely applied in many areas of economics. To name a few, in labor economics, researchers use quantile regression to capture the changes in earning distributions and measure wage inequalities, see Chamberlain (1994), Chernozhukov and Hansen (2004), Angrist et al. (2006), Arellano and Bonhomme (2017) and many others. In health economics, Abrevaya (2002) uses quantile regression to estimate the quantiles of infant birth-weight distribution based on demographic and maternal variables. In the causal inference framework, Abadie et al. (2002) use quantile regression to estimate the quantile treatment effects of subsidized training on trainees’ salaries. In macroeconomics, Adrian et al. (2019) and Brownlees and Souza (2021) use quantile regression to measure the potential national or global economic recession levels. In finance, quantile estimates can act as a measure of Value-at-Risk (VaR) and capture the volatility of financial assets, see plenty of literature in Xiao et al. (2015).

Overall, quantile regression has the potential to reveal more distributional information on the data and ensure robustness for the estimates compared to mean regression.

A typical model in quantile regression is the linear quantile regression model, which is in the form of

\[Q_\tau (y_i | x_i) = x_i' \beta_\tau \quad \text{for } i = 1, \ldots, n, \]

where \(Q_\tau (y_i | x_i) \) denotes the \(\tau \)-th conditional quantile of a response variable, \(y_i \), given the covariates, \(x_{i \times p} \times 1 \). The \(p \)-dimensional, \(\beta_\tau \), is the corresponding coefficients. The heterogeneous or distributional effect can be interpreted as \(\beta_\tau \) for different \(\tau \). Therefore, this type of quantile regression model can capture the heterogeneous effect of covariates, conduct robust estimation, and make the distributional prediction.

Nowadays, the advent of big data creates unprecedented opportunities and challenges for researchers. Along with the development of quantile regression, high-dimensional statistical models have become popular among researchers and empirical practitioners over the past two decades. There are some famous review papers and references that summarize the recent development of high-dimensional economic models and methods: Fan et al. (2011), Athey and Imbens (2019), and Giannone et al. (2021), to name a few. High-dimensionality often exists in the dimension of covariates or predictors. This means that the number of covariates or predictors, \(p \), is larger or comparably larger than the sample size, \(n \). Under this setup, two main obstacles arise. First, the traditional estimation and inference procedure might break down when \(n < p \). For example, the direct solution of the ordinary least square (OLS) estimator becomes infeasible. The same issue appears in quantile
regression. Second, given the abundance of variables, economic researchers desire to distinguish the important covariates from other potentially irrelevant covariates. This idea would prevent those irrelevant covariates from masking true signals. Based on the selection results, researchers can further explain and modify to the economic models. Therefore, a model selection or variable selection procedure is essential for high-dimensional models.

While incorporating high-dimensionality issue \((p > n)\) into quantile regression, simplification of the model assumption is needed. Typically, models assume the sparsity level, i.e., the number of non-zero coefficients, \(s_0\), which is smaller compared with \(n\) \((s_0 < n)\). To accommodate this high-dimensionality problem, a common approach to the selection of informative covariates is the penalization method. For example, Belloni and Chernozhukov (2011) first propose the \(l_1\)-penalized quantile regression, which is an analog of the famous “least absolute shrinkage and selection operator” (LASSO) in mean regression. The \(l_1\)-penalized quantile regression applies shrinkage regularization on \(\beta_\tau\) and controls the number of non-zero coefficients by solving linear programming optimizations. Alternatively, we can switch the penalization scheme to \(l_0\)-penalized quantile regressions, or its variant best-subset selection in quantile regressions, as in Chen and Lee (2020). Both approaches are attractive, but they also have certain disadvantages. For the \(l_1\)-penalization method, researchers need to choose a suitable tuning parameter (penalization parameter), which is only indirectly related to the number of selected variables. In addition, the computational cost of searching for a proper choice of tuning parameter is not low. For the second approach, both best-subset selection and \(l_0\)-penalization suffer an issue of high-computational burden, which is NP-hard in nature, even if some modern optimization techniques such as mixed integer optimization (MIO) solver are utilized.

There is another classical approach to solving the high-dimensional issue and overcoming the computational difficulty of finding the tuning parameter or the optimization solution. This approach relies on the forward selection procedure, i.e., greedy algorithm, to select one additional variable together with previously selected variables by reducing the loss function as much as possible in each step. The forward selection approach is widely applied in plenty of model, variable, and sample selection problems. It shows significant effects on both the selection of objectives and the computational efficiency; see Miller (2002) and Bühlmann and Van De Geer (2011) for textbook treatments. In the classical least square model, forward selection has been applied not only in variable selection but also in variable screening for ultra-high-dimensional data. For example, Zhang (2009) shows the asymptotic properties of forward least square regression, while Wang (2009) investigates the performance of forward selection in the screening framework. Although forward selection has been hugely successful under the least square framework, its theoretical guarantee in the context of the linear quantile regression model is still unknown, to the best of our current knowledge.

In this paper, we investigate several theoretical properties of two types of quantile forward regression within the high-dimensional linear quantile regression framework. Our analysis contains \(K\)-step quantile forward regression and \(t\)-threshold quantile forward regression. This paper first studies non-asymptotic prediction bounds for both types of quantile forward regressions. These non-asymptotic bounds complement previous results about forward selection in the least square
literature. The bound for K-step quantile forward regression is a quantile analog of the results in Elenberg et al. (2018), while the bound for t-threshold quantile forward regression inherits the ideas in Kozbur (2020). Second, this paper considers an asymptotic framework that allows the number of covariates to diverge faster than the sample size. Under this framework, this paper shows the convergence results on coefficients, prediction consistency, and asymptotic efficacy for K-step quantile forward regression. Our asymptotic framework is adapted from Shi and Huang (2021), which allows the number of steps K to diverge at a relatively slow rate. This coefficients convergence rate achieves the same $O\left(\sqrt{\frac{\log p}{n}}\right)$ rate as penalization methods, except for an additional \sqrt{K} term, which is asymptotically negligible compared to the $\sqrt{\frac{\log p}{n}}$ term in both theory and practice. Our results on asymptotic efficacy show good attributes about the approximation to the optimality in terms of quantile loss function asymptotically. In our numerical simulation part, we compare the performance of K-step quantile forward regression with l_1-penalized quantile regression under different data generating process (DGP) settings. Our Monte Carlo simulation results show that the K-step quantile forward regression outperforms l_1-penalized quantile regression under both sparse and dense models in terms of the average quantile prediction accuracy and the effectiveness in variable selection. To show the promising usage of our method, we apply K-step quantile forward regression into two empirical examples with real macroeconomic data. The first application considers a growth-at-risk (GaR) prediction example with high-dimensional macroeconomic series. Our result suggests that K-step quantile forward regression can provide more accurate quantile forecasting than l_1-penalized quantile regression. In the second application, we examine the famous international growth convergence hypothesis from the quantile perspective with relatively high-dimensional, country-specific, cross-sectional data. We first select relevant conditioning covariates by our K-step quantile forward regression and then obtain the estimate of the effect across different quantiles. Our result confirms the hypothesis that poorer countries have a higher potential growth rate and wealthier countries have a lower rate. This finding is in coherence with existing literature, e.g., Chernozhukov et al. (2016) and Koenker and Machado (1999), but provides more information on variable selection over the growth rate distribution.

The rest of the paper is organized as follows. We finish the literature review about forward regression techniques and variable selection methods for quantile regression in this section. Section 2 introduces the model framework for quantile forward selection, as well as different types of forward selection algorithms. We also present several key definitions: submodularity ratio, strong concavity, and strong smoothness in the same section. Section 3 presents the non-asymptotic bounds for both types of quantile forward regressions. In section 4, we demonstrate the asymptotic consistency and efficacy of K-step quantile forward regression. We show Monte Carlo simulations of K-step quantile forward regressions and compare those finite-sample numerical results with those of the l_1-penalized method in section 5. Section 6 demonstrates two empirical applications: the Growth-at-Risk prediction example and the international growth convergence example for quantile forward regression. The last section concludes. Detailed proofs and other complementary materials are provided in the appendix.
Relevant literature

Since this paper contributes to the literature about quantile forward regression under high-dimensional data, the first part of the literature review is about forward selection, i.e., greedy algorithms. In the context of OLS estimation, Das and Kempe (2011, 2018) show the non-asymptotic guarantee bounds of forward selection in the least square estimator using properties from the submodularity ratio. Elenberg et al. (2018) consider the connection between forward selections and weak submodularity ratio and show the performance bounds for forward selection and orthogonal matching pursuit of both linear regression and logistic regression. Wang (2009) considers asymptotic properties of forward regression under a ultra-high-dimensional variable screening scenario. Sancetta et al. (2016) consider various type of greedy algorithms for prediction under the mixing condition. Ing (2020) investigates the least square forward selection with time series data. Shi and Huang (2021) introduce forward selection with panel data into a program evaluation framework. Moreover, Kozbur (2020) considers a testing-based forward selection procedure to choose the best model in the least square forward regression.

For completeness of this literature review, we will summarize other variable selection techniques in the context of linear quantile regression. Belloni and Chernozhukov (2011) consider the quantile regression with l_1 penalty on coefficients. Wang (2013) also shows the l_1-penalized least absolute deviation (LAD) estimator under a high-dimensional setup. Besides the traditional l_1 norm regularization, there are other various penalization methods within the quantile regression framework. For example, Kato (2011) proposes the group LASSO estimator for quantile regression. Zheng et al. (2013) and Zheng et al. (2015) consider the adaptive penalized quantile regression in high-dimensional data. Fan et al. (2021) apply the adaptive LASSO to predictive quantile regression with mixed root covariates. Wu and Liu (2009) demonstrate the theoretical properties of smoothly clipped absolute deviation (SCAD) in quantile regression.

Notations

In this paper, we denote plain letters “x” and “X” as scalars, a boldface lowercase letter “x” as a vector, and a boldface uppercase letter “X” as a matrix. We use $[p]$ to denote the index set $\{1, \ldots, p\}$ and $2^{|p|}$ to denote the set of all subsets in $[p]$. We denote $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ for the minimal and maximal eigenvalues for matrix A. We let $\|\cdot\|$ as the L_1-norm and $\|\cdot\|_p$ as the L_p-norm for vectors and $\langle \cdot, \cdot \rangle$ as the inner product of two vectors in Euclidean space. We use $E(\cdot)$ and $E_n(\cdot)$ as the population and empirical expectations. Generically, we denote ∇ as the (sub)gradient operator. For any $u \in (0,1)$, $\rho_\tau(u) = u (\tau - 1 (u < 0))$ acts as the traditional quantile loss function, and its subgradient is $\psi_\tau(u) = \tau - 1 (u < 0)$.

2 Model framework and quantile forward regression

In this section, we introduce the linear quantile regression model with high-dimensional covariates. We also explain two different types of quantile forward regression algorithms, namely, K-step
quantile forward regression and \(t \)-threshold quantile forward regression. In addition, some relevant definitions for further theoretical analysis are discussed.

2.1 Linear quantile regression model and notations

Suppose that the data \(\{y_i, x_i\}_{i=1}^n \in \{\mathbb{R} \times \mathbb{R}^p\}^n \) of sample size \(n \) are randomly generated from a joint distribution \(P(y, x) \). For covariates, we allow their cardinality can diverge to infinity, i.e., \(p = 1, \ldots, \infty \). We consider the traditional linear quantile regression model in the following form:

\[
y_i = x_i^T \beta + \varepsilon_i = \sum_{j=1}^{\infty} x_{ij} \beta_j + \varepsilon_i
\]

for all observations \(i = 1, \ldots, n \). We denote \(\beta_j = \beta_j(\tau) \) as the quantile regression coefficients and \(\varepsilon_i = \varepsilon_i(\tau) = y_i - Q_y(\tau|x_i) \) as the error term for any fixed \(\tau \in (0, 1) \), where \(Q_y(\tau|x) \) denotes the conditional quantile of \(y \) given \(x \). Under this setup, we have the conditional quantile of the population error term, \(\varepsilon_0 \), is 0 at quantile level \(\tau \) given \(x \), i.e., \(P(\varepsilon_0 < 0|x) = \tau \). Later we drop the notation \(\tau \) in coefficients and variables for simplicity. Similarly, we write the model in the population level as

\[
y = x^T \beta + \varepsilon_0 = x_1 \beta_1 + x_2 \beta_2 + \cdots + \varepsilon_0
\]

As mentioned above, this model allows for a high-dimensionality structure. Therefore, assuming a sparse structure in the coefficients is a common approach for the convenience of inference. If we impose a sparsity specification, then we call the model sparse. However, in this paper, we do not assume that the linear quantile model is necessarily sparse. So, if the model is dense, we consider a sparse linear quantile structure as an approximation of the true model. Therefore, we denote \(\beta_0 \) as the true sparse coefficients under the sparse model or the best sparse coefficients to approximate the dense model. We will assume its cardinality is less than the sample size, i.e., \(|\beta_0| = s_0 < n \). In addition, we use \(S^* \subset [p] \) as the optimal index set for \(\beta_0 \) in the sense that \(S^* = \{j \in [p]: \beta_{0j} \neq 0\} \).

Quantile regression estimator \(\beta_0 \in \mathbb{R}^p \) in the population level is defined as

\[
\beta_0 = \arg \min_{\beta} E(\rho_\tau(y - x^T \beta))
\]

as well as the sample analog

\[
\hat{\beta} = \arg \min_{\beta} E_n(\rho_\tau(y - x^T \beta))
\]

For any given \(\beta \in \mathbb{R}^p \), we define the loss function \(l(\beta) : \mathbb{R}^p \to \mathbb{R} \) and empirical loss function \(l_n(\beta) : \mathbb{R}^p \to \mathbb{R} \) with respect to \(\beta \) as

\[
l(\beta) = E(\rho_\tau(y - x^T \beta)) \quad l_n(\beta) = E_n(\rho_\tau(y - x^T \beta))
\]
For further analysis, we denote the negative loss function \(f(S), f_n(S) : 2^{|p|} \to \mathbb{R} \) with respect to the index sets as

\[
\begin{align*}
 f(S) &= -l(\beta_S) \\
 f_n(S) &= -\ln(\beta_S)
\end{align*}
\]

for any set \(S \in 2^{|p|}, S \subseteq [p] \). We use \(\beta_S \) denoting the quantile regression estimator with the covariates’ index set \(S \). Similarly, \(x_S \) denotes the sub-vector of \(x \) with respect to \(S \).

2.2 Quantile forward regression algorithms

Forward regression algorithms denote a class of model, variable, and sample selection techniques. It includes \(K \)-step forward regression, \(t \)-threshold forward regression, orthogonal matching pursuit, testing-based forward regression, as well as many others. In this paper, we mainly focus on the \(K \)-step forward regression and \(t \)-threshold forward regression. These two are the most commonly-used algorithms. We illustrate these two quantile forward regression algorithms in the following paragraphs. Besides, we discuss the testing-based quantile forward regression briefly in the appendix.

\(K \)-step quantile forward regression

The \(K \)-step quantile forward regression chooses one variable greedily at a time until a fixed number of steps \(K \) is reached. In every selection step, it maximizes the difference of negative quantile loss functions. The Algorithm 1 below illustrates this procedure.

Algorithm 1 \(K \)-step quantile forward regression

1. Set \(S_0 = \emptyset \).
2. For \(1 \leq k \leq K \),
 - (a) Select the variable index \(s = \arg \max_{j \in [p] \setminus S_{k-1}} f(S_{k-1} \cup \{j\}) - f(S_{k-1}) \).
 - (b) Set \(S_k = S_{k-1} \cup \{s\} \).
3. Return \(S_K \) and the corresponding estimator \(\hat{\beta}_{S_K} \).

\(t \)-threshold quantile forward regression

Under the same model setup, the \(t \)-threshold quantile forward regression selects covariates by setting a threshold. For any fixed choice of \(t \) as the performance improvement threshold, we hope to make the improvement of each step larger than \(t \). Among those variables that can satisfy this threshold condition, we choose the best one that maximizes the improvement. Details are in the Algorithm 2 below.
Algorithm 2 \textit{t}-threshold quantile forward regression

1. Set $S_0 = \emptyset$.

2. For $k = 1, 2, \ldots$

 (a) If $f(S_{k-1} \cup \{j\}) - f(S_{k-1}) > t$ for some $j \in [p] \setminus S_{k-1}$

 i. Select the variable index

 \[s = \arg \max_{j \in [p] \setminus S_{k-1}} \left\{ f(S_{k-1} \cup \{j\}) - f(S_{k-1}) \mid f(S_{k-1} \cup \{j\}) - f(S_{k-1}) > t \right\} \]

 ii. Set $S_k = S_{k-1} \cup \{s\}$.

 (b) Else, break the algorithm and let $K = k$

3. Return $\hat{S} = S_K$ with final step K. \hat{S} satisfies $f(\hat{S} \cup \{j\}) - f(\hat{S}) < t$ for all $j \in [p] \setminus \hat{S}$, and the corresponding estimator is $\hat{\beta}_{\hat{S}}$.

As we can notice, both algorithms above choose one important variable in every step but follow different criteria. For K-step quantile forward regression, the choice of K is crucial. In the later simulation and applications parts, K is determined by information criteria, such as AIC or BIC. This approach is intuitive since classical information criteria depend on the number of selected covariates, which is exactly K in the Algorithm 1. In addition, K is also important in the asymptotic analysis because we need to allow $K \to \infty$ as $p \to \infty$ in our high-dimensionality framework. It is intuitive that the more steps we experience, the higher the probability is that we can select important covariates. For the t-threshold quantile forward regression, selecting a suitable t is important. An advantage of the t-threshold approach is that t is a continuous tuning parameter, while K can only be integers. Since the choice of t depends on data, however, there is no criterion for theoretical guidance so far. Although this drawback limits the usage of the Algorithm 2, one variant of t-threshold forward selection called testing-based forward selection can provide some meaningful explanation of the threshold, see Kozbur (2020). The testing-based forward selection procedure incorporates a statistical hypothesis to determine important covariates; see further discussion in the appendix.

2.3 Related definitions

In this subsection, we introduce a key definition named submodularity ratio. As mentioned by Das and Kempe (2018, 2011), the submodularity ratio plays an important role in analyzing sparse selection problems, especially for forward selection algorithms. We borrow the definition of submodularity ratio from the definition 2 in Das and Kempe (2018):

\textbf{Definition 2.1.} The submodularity ratio of a monotone function f with respect to a set U and an
integer $k \geq 1$ is defined as
\[
\gamma_{U,k}(f) = \min_{L \subseteq U, |S| \leq k, S \cap L = \emptyset} \frac{\sum_{x \in S} f(L \cup \{x\}) - f(L)}{f(L \cup S) - f(L)}
\]

In the next section, we will show the lower bound of the submodularity ratio for a transformation of negative quantile loss function f and use this term to derive the non-asymptotic prediction bounds. This approach is similar to Das and Kempe (2018), who utilize the submodularity ratio in the least square forward regression estimator.

Moreover, it is worth mentioning that if f is submodular1, then $\gamma_{U,k}(f) \geq 1$. In the forward selection algorithm, we usually have $0 \leq \gamma_{U,k}(f) \leq 1$, and researchers call it the weak submodularity. This means that, even if the function f is not submodular, we can still use its properties to provide performance bounds.

To show the weak submodularity, we also mention two relevant definitions from Elenberg et al. (2018): restricted strong concavity and restricted smoothness of a function f. These two properties imply weak submodularity.

Definition 2.2. A function $f: \mathbb{R}^p \rightarrow \mathbb{R}$ satisfies the restricted strong concavity with parameter m_Ω and restricted smoothness with parameter M_Ω on a domain $\Omega \subset \mathbb{R}^p \times \mathbb{R}^p$ if for all $(a, b) \in \Omega$, we have
\[
-\frac{m_\Omega}{2} \|b - a\|^2_2 \geq f(b) - f(a) - \langle \nabla f(a), b - a \rangle \geq -\frac{M_\Omega}{2} \|b - a\|^2_2
\]

An intuitive explanation for these two definitions is that restricted strong concavity and restricted smoothness parameters control the upper and lower bounds of the remainder of the first-order Taylor expansion of function f. Good behavior of the remainder indicates decent control of the first order approximation of f. Therefore, when the greedy algorithm is applied, it will eventually take control of every greedy step; see more discussion in Elenberg et al. (2018). For example, in the least square forward regression, restricted strong concavity and restricted smoothness parameters of the mean-square loss function are apparent and related to the Gram matrix of the data Exx^T.

In the next section, we will also present these two parameters for the quantile forward regressions.

3 Non-asymptotic properties for quantile forward regressions

In this section, we analyze prediction error bounds for Algorithms 1 and 2 above. We first analyze the quantile loss prediction bound for K-step quantile forward regression. The primary tool we use is from Elenberg et al. (2018), which shows that the non-asymptotic prediction bound is related to the submodularity ratio of the forward selection algorithms. Next, we illustrate a theoretical analysis of t—threshold quantile forward regression. We apply the techniques from Das and Kempe (2018) and Kozbur (2020), which show the prediction bounds for least square forward regression.

\[\text{Footnote: 1A function } f \text{ is submodular if for all subset } L \subseteq [p] \text{ and } x, y \in [p] \setminus A, f(A \cup \{x\}) - f(A) \geq f(A \cup \{x, y\}) - f(A \cup \{y\}).\]
3.1 K-step quantile forward regression

To consider the prediction bound of K-step quantile forward regression, we state the following regularity assumptions.

Assumption 1. Let $\{y_i, x_i\}_{i=1}^n \in \{\mathbb{R} \times \mathbb{R}^p\}_1^n$ be i.i.d observations randomly drawn from the same joint distribution $P(y, x)$.

Assumption 2. (Boundedness conditions) (i) Assume $\sup_{j \in [p]} |x_j| < \infty$. (ii) For any $\tilde{\beta}_S = \arg \min_{\beta_S} E(\rho_T(y - x^T_S \beta_S))$ with $S \subseteq [p]$ and $|S| \leq 2K$, let $\sup_S |x^T_S \tilde{\beta}_S| < \infty$. (iii) In addition, let $\beta_S \in \Omega_S$ and $\Omega_S \subset \mathbb{R}^{|S|}$ is compact for all $S \subseteq [p]$.

Assumption 3. (Density conditions) (i) For any set $S \subseteq [p]$ with $|S| \leq 2K$, the conditional density function $f_y(y|x_S)$ has bounded support and is continuously differentiable for any x_S in its support. (ii) For any $S \subseteq [p]$ with $|S| \leq 2K$, let $0 < \epsilon_f \leq f_y(y|x_S) \leq \bar{c}_f < \infty$ for some universal constants ϵ_f and \bar{c}_f, i.e., the conditional density function is bounded below and above by some universal constants.

Assumption 4. (Eigenvalues condition) For any set $S \subseteq [p]$ with $|S| \leq 2K$, the matrix $J_S = \text{diag}(f_y(y|x_S)x_S x^T_S)$ satisfies the following eigenvalue condition

$$0 < m_S \leq \lambda_{\min} (J_S) \leq \lambda_{\max} (J_S) \leq M_S < \infty$$

with some universal constants m_S and M_S.

Moreover, we denote $\phi_{\min}(s)(J) = \min_{S \subseteq [p]: |S| \leq s} \lambda_{\min}(J_S)$ as the minimal eigenvalue over all sets S and $\phi_{\max}(s)(J) = \max_{S \subseteq [p]: |S| \leq s} \lambda_{\max}(J_S)$ as the maximal eigenvalue, respectively.

Before we move on to detailed proofs, we make some remarks on the above assumptions. Assumption 1 is a regular assumption in data sampling. This i.i.d assumption can be relaxed if we only consider the non-asymptotic properties. Assumption 2 imposes the boundedness conditions on the covariates and their linear combinations with respect to the coefficients. The boundedness conditions are common in high-dimensional analysis, see Ma et al. (2017) and can simplify our theoretical analysis. Intuitively, we can replace those boundedness conditions by imposing control on the tail of the random variables. However, this will make the technical proofs much more complicated, so we will get rid of this approach. Assumption 3 on the conditional density of response variable is standard in quantile regression literature, even for the high-dimensional quantile regression literature; see Belloni and Chernozhukov (2011). This assumption rules out irregular cases about the conditional density of the data. In addition, a well-behaved shape of the conditional density implies the restricted strong concavity and the restricted smoothness condition of the quantile loss function. As for the eigenvalues assumption, Assumption 4 is modified from Lee and Shin (2021) and Lu and Su (2015). This restricted eigenvalue assumption is crucial to the derivation of the following bounds. In addition, the definitions of $\phi_{\min}(s)(J)$ and $\phi_{\max}(s)(J)$ imply the monotone properties of $\phi_{\min}(s)(J)$ and $\phi_{\max}(s)(J)$ with respect to s, i.e., $\phi_{\min}(s_2)(J) < \phi_{\min}(s_1)(J)$ and $\phi_{\max}(s_1)(J) < \phi_{\max}(s_2)(J)$ if $s_1 < s_2$.

10
In Algorithm 1, we shall minimize quantile loss functions in every step with respect to certain index set, S, i.e., $\min_{\beta_S} E_\tau [y - x_T^T \beta_S]$. An equivalent formulation is offered to maximize the quantile-type goodness-of-fit $R^1_\tau (\beta_S)$ in Koenker and Machado (1999):

$$R^1_\tau (\beta_S) = 1 - \frac{E_\tau [y - x_T^T \beta_S]}{E[y - y]}$$

where the numerator is the quantile loss function with respect to x_S and the denominator is the quantile loss function with respect to the intercept term α only. It is straightforward that $0 \leq R^1_\tau (\beta_S) \leq 1$ and $R^1_\tau (\beta_S)$ measures the goodness-of-fit in the quantile sense, like R^2 in least square estimation. Equipped with this measurement, we show that $R^1_\tau (\beta_S)$ is weak submodular in the following lemma and then we can derive the performance bound for K-step quantile forward regression. Our approach follows Elenberg et al. (2018) and the basic idea is to demonstrate restricted strong concavity and restricted smoothness of $R^1_\tau (\beta_S)$.

Lemma 3.1. (Restricted strong concavity and restricted smoothness of $R^1_\tau (\beta_S)$) Under Assumptions 2, 3, and 4, the population quantile goodness-of-fit $R^1_\tau (\beta_S) = 1 - \frac{E_\tau [y - x_T^T \beta_S]}{E[y - y]}$ satisfies restricted strong concavity and restricted smoothness from definition 2.2 for any $\beta_S \in \mathbb{R}^p$ and index set S, i.e., let

$$D = R^1_\tau (\beta_2) - R^1_\tau (\beta_1) - \left\langle \frac{E_\tau [x^T (\tau - 1 (y - x^T \beta_1 < 0))]}{E[y - y]}, \beta_2 - \beta_1 \right\rangle$$

, we have

$$\frac{\lambda_{\min} (J_S)}{2E[y - y]} \| \beta_2 - \beta_1 \|^2_2 \geq D \geq -\frac{\lambda_{\max} (J_S)}{2E[y - y]} \| \beta_2 - \beta_1 \|^2_2$$

Remark 3.1. For least square regression, it is known that the negative quadratic loss function satisfies restricted strong concavity and restricted smoothness, as stated in Elenberg et al. (2018). Indeed, restricted strong concavity and restricted smoothness parameters are $\lambda_{\min} (x x^T)$ and $\lambda_{\max} (x x^T)$, the minimal and maximal eigenvalue of the Gram matrix. This is consistent with the restricted isometry property as Das and Kempe (2011). In the quantile regression, we obtain a similar expression of restricted strong concavity and restricted smoothness parameters for $R^1_\tau (\beta_S)$, i.e., $\frac{\lambda_{\min} (J_S)}{E[y - y]}$ and $\frac{\lambda_{\max} (J_S)}{E[y - y]}$. Indeed, J_S relates to the conditional density behavior of the data. Like classical quantile regression literature, if J_S behaves well, then good theoretical property follows.

It is worth mentioning another important point. Based on the same technique, we can also show the restricted concavity and restricted smoothness of the negative quantile loss function $-l (\beta_S)$, with $\lambda_{\min} (J_S)$ and $\lambda_{\max} (J_S)$ as corresponding parameters. There are two reasons why we focus on $R^1_\tau (\beta_S)$. First, $R^1_\tau (\beta_S)$ is always a positive number between 0 and 1. Second, $R^1_\tau (\beta_S)$ has an intuitive meaning as the goodness-of-fit to measure the amount of the response variable that is explained by the selected covariates.

Based on lemma 3.1, we have the following theorem for the approximation guarantee bound of $R^1_\tau (\beta_S)$ by directly applying the results in Elenberg et al. (2018) in the population level. This approximation guarantee bound means that it depends on the best approximation results under the
Theorem 3.1. (Approximation guarantee bound for $R_1^T(\beta_{S^K})$) Under Assumptions 2, 3, and 4, and Algorithm 1 above, the submodularity ratio $\gamma_{S^K,K}$ is lower bounded by $\frac{\phi_{\text{min}}(2K)(J)}{\phi_{\text{max}}(2K)(J)}$. Moreover, we have

$$R_1^T(\beta_{S^K}) \geq (1 - e^{-\gamma_{S^K,K}}) R_1^T(\beta_{S^*}) \geq \left(1 - e^{-\frac{\phi_{\text{min}}(2K)(J)}{\phi_{\text{max}}(2K)(J)}}\right) R_1^T(\beta_{S^*})$$

where we denote S^* as the optimal index set for covariates.

Proof. With Lemma 3.1, we know that $R_1^T(\beta_{S^K})$ satisfies weak submodularity with the restricted strong concavity parameter $\frac{\phi_{\text{min}}(2K)(J)}{E[p_\tau(y-y\alpha)]}$ and the restricted smoothness parameter $\frac{\phi_{\text{min}}(2K)(J)}{E[p_\tau(y-y\alpha)]}$ under K-step quantile forward regression. Therefore, by Theorem 3 in Elenberg et al. (2018),

$$\gamma_{S^K,K} \geq \frac{\phi_{\text{min}}(2K)(J)}{\phi_{\text{max}}(2K)(J)}$$

From Theorem 3 in Elenberg et al. (2018), two inequalities hold naturally. \qed

Our Theorem 3.1 is an analog of Theorem 3 in Elenberg et al. (2018) in the context of quantile regression with respect to the goodness of fit R_1^T. It is worth mentioning that we do not impose the true specification of the linear quantile model in this theorem. Regardless the model is correctly specified with a sparse true index set S^* or the model is misspecified, which means the number of covariates p diverges to infinity, and we always have this constant factor approximation bound for R_1^T. Since we have the population guarantee bounds for R_1^T, it is straightforward to obtain the population prediction bounds for the quantile loss function $E[p_\tau(y - x_{S^K}^T \beta_{S^K})]$.

Theorem 3.2. (Approximation guarantee bound for K-step quantile forward regression) Under the conditions in Theorem 3.1, we have

$$E[p_\tau(y - x_{S^K}^T \beta_{S^K})] \leq \left(1 - e^{-\frac{\phi_{\text{min}}(2K)(J)}{\phi_{\text{max}}(2K)(J)}}\right) E[p_\tau(y - x_{S^*}^T \beta_{S^*})] + e^{-\frac{\phi_{\text{min}}(2K)(J)}{\phi_{\text{max}}(2K)(J)}} E[p_\tau(y - \alpha)]$$

Proof. This result follows from Theorem 3.1 and the definition of R_1^T. \qed

From the above theorem, the population approximation bound for $E[p_\tau(y - x_{S^K}^T \beta_{S^K})]$ is a linear combination of the population quantile loss with respect to the optimal sparse index set S^* and the intercept term α. In addition, we know $E[p_\tau(y - \alpha)]$ is always larger than $E[p_\tau(y - x_{S^*}^T \beta_{S^*})]$. So, there is a gap between the population quantile loss $E[p_\tau(y - x_{S^K}^T \beta_{S^K})]$ and the optimal loss $E[p_\tau(y - x_{S^*}^T \beta_{S^*})]$. However, from the monotonicity of $\phi_{\text{min}}(2K)(J)$ and $\phi_{\text{max}}(2K)(J)$, when K is increasing, $E[p_\tau(y - x_{S^K}^T \beta_{S^K})]$ is approaching to $E[p_\tau(y - x_{S^*}^T \beta_{S^*})]$ because the second term is diminishing.

For the sampling property, we have the following non-asymptotic probabilistic bound. It indicates that the sample quantile loss function is bounded by the linear combination of $E[p_\tau(y - x_{S^*}^T \beta_{S^*})]$ and $E[p_\tau(y - \alpha)]$ under high probability if n is large.
Corollary 3.1. Under the conditions in Theorem 3.2, for any $\varepsilon > 0$, we have

$$
Pr \left[\frac{\varepsilon}{n} \sum_{i=1}^{n} \rho_{\tau} (y_i - x_{i,S_K}^T \beta_{S_K}) \leq \left(1 - e^{-\phi_{\min}(2K)(J)} \right) E \left[\rho_{\tau} (y - x_{S^*}^T \beta_{S^*}) \right] + e^{-\phi_{\min}(2K)(J)} E \left[\rho_{\tau} (y - \alpha) \right] + \varepsilon \right] \geq 1 - e^{-\varepsilon^2/(n(1-\tau)^{1+\frac{\delta}{2}})}
$$

As a summary, we derive the approximation guarantee bound and non-asymptotic bound for K-step quantile forward regression. It is clear that the probabilistic bound in Corollary 3.1 converges to 1 as $n \to \infty$. The proof of this sampling bound is based on Bernstein-type inequality on bounded random variables. If we consider the case with $n \to \infty$ and $K \to \infty$, intuitively, we should obtain an excellent approximation of $E \left[\rho_{\tau} (y - x_{S^*}^T \beta_{S^*}) \right]$ by the sample $\frac{1}{n} \sum_{i=1}^{n} \rho_{\tau} (y_i - x_{i,S_K}^T \beta_{S_K})$. More details on the asymptotic theory of K-step quantile forward regression will be discussed in section 4.

3.2 t-threshold quantile forward regression

In this subsection, we consider the performance bound of t-threshold quantile forward regression. Unlike simply choosing the number of steps K, using threshold t as a tuning parameter is more flexible. The reason is that t can be a continuous positive number while K can only be an integer. However, the disadvantage of selecting t is that there are no traditional standards, e.g., information criterion, in practice.

Our t-threshold quantile forward regression algorithm is a quantile type analog of algorithm 1 in Kozbur (2020). To characterize the performance bound, we shall first prove the following lemmas. Lemma 3.2 is a quantile regression version of lemma 17 in Das and Kempe (2018), which is wildly used in the least square forward regression literature. Lemma 3.3 serves as a basic inequality for the loss function.

Lemma 3.2. Under the Assumptions 2, 3, 4 and Algorithm 2 above, we have

$$
f \left(\hat{S} \cup S^* \right) - f \left(\hat{S} \right) \leq \frac{\phi_{\max}(K + s_0)(J)}{\phi_{\min}(K + s_0)(J)} s_0 t
$$

Lemma 3.3. $f \left(\hat{S} \cup S^* \right) \geq f \left(S^* \right)$

As a remark, Lemma 3.2 controls the difference of quantile loss functions between $\hat{S} \cup S^*$ and \hat{S}. Intuitively, the less of the cardinality of the true coefficients s_0, or the smaller the threshold t we choose, the better we can control this difference.

Based on the previous lemmas, we can show the l_2-bound and quantile loss bound for prediction error. This proof procedure follows the first part of theorem 1 in Kozbur (2020). Moreover, we need to state an additional assumption on the density of the error term. The following assumption controls the good behaviors of ε_0.

13
Assumption 5. The unconditional probability density function of ε_0, f_{ε_0} is bounded below and above by $\underline{f}_{\varepsilon_0}$ and \bar{f}_{ε_0} in the sense that

$$0 < \underline{f}_{\varepsilon_0} \leq f_{\varepsilon_0} \leq \bar{f}_{\varepsilon_0} \leq \infty$$

Theorem 3.3. Under the Assumptions 2, 3, 4, 5 and Algorithm 2 above, we have the following l_2 prediction bound

$$E \left(\left(x^T \hat{\beta} - x^T \beta_0 \right)^2 \right)^{\frac{1}{2}} \leq \sqrt{K + s_0} \left[\frac{2}{\underline{f}_{\varepsilon_0}} \left\| E x \psi_\tau \left(y - x^T \beta_0 \right) \right\|_\infty + \frac{1}{\bar{f}_{\varepsilon_0}} \frac{2 \phi_{\max} (K + s_0) \left(J \right)_t}{\phi_{\min} (K + s_0) (E \left(xx^T \right))} \right]$$

In addition, the quantile prediction loss has the same upper bound

$$\rho_\tau \left(x^T \hat{\beta} - x^T \beta_0 \right) \leq \sqrt{K + s_0} \left[\frac{2}{\underline{f}_{\varepsilon_0}} \left\| E x \psi_\tau \left(y - x^T \beta_0 \right) \right\|_\infty + \frac{1}{\bar{f}_{\varepsilon_0}} \frac{2 \phi_{\max} (K + s_0) \left(J \right)_t}{\phi_{\min} (K + s_0) (E \left(xx^T \right))} \right]$$

As a summary for this subsection, it is worth mentioning that these prediction bounds are in line with the simple forward selection in Kozbur (2020). In addition, these bounds do not depend on the data sampling of Assumption 1. Therefore, they are quite general for a different type of data structure. If we impose some high-level assumptions such as $K = O \left(s_0 \right)$ and $t = O \left(\frac{\log p}{n} \right)$, we can achieve the same $O \left(\sqrt{s_0 \log p} \right)$ rate as Kozbur (2020) in the asymptotic context. Another extension of this result is the non-asymptotic bounds for testing-based quantile forward regression. We provide more details in the appendix.

4 Asymptotic analysis for K-step quantile forward regression

In this section, we investigate the asymptotic analysis for the K-step quantile forward regression at the sample level. We only analyze K-step quantile forward regression because our asymptotic framework requires both K and n to go to infinity with certain regularity conditions. The asymptotic analysis provides us the convergence rate for K-step quantile forward regression estimators and its quantile loss prediction error.

As far as we know, the connection between K-step and t-threshold quantile forward regressions is generally unknown. It is still an open question to find explainable reasoning for the asymptotic conditions of t-threshold quantile forward regression. However, the asymptotics with respect to K are intuitive. For the asymptotic consistency of $\hat{\beta}_S$, we do not impose conditions on the sparsity level, s_0. Hence, the model can be misspecified as before. Our proof procedure follows Lu and Su (2015) and Lee and Shin (2021). Later, we consider the asymptotic efficacy, which assumes that the sparsity level, s_0, is asymptotically negligible compared to the number of steps, K. Following Shi and Huang (2021), this assumption gives us more elegant results on the asymptotic optimality of the K-step quantile forward regression.
4.1 *K*-step quantile forward regression

In addition to the assumptions above, we impose the following rate condition on *K*, *p*, and *n*.

Assumption 6. (Rate conditions)

(i) For any sequences *K*, *p*, and *n*, we have \(\frac{1}{K} + \frac{K}{\log p} + \frac{\log p}{n} \to 0 \) as \(n \to \infty \) and \(p \to \infty \).

(ii) For such sequences, we let \(\frac{K}{(n \log p)^{\frac{1}{2}}} \to 0 \).

As a remark, Assumption 6 (i) requires some regularity conditions on the number of steps *K*, the number of covariates *p*, and the sample size *n*. It contains three aspects of the relative divergence rates among *K*, *p*, and *n*. For the first aspect, we impose that the number of steps *K* goes to infinity. This condition is commonly used in forward selection literature; see assumption 1 in Shi and Huang (2021). An intuitive explanation is that the more we select, the better our approximation result achieves. For the second aspect, we require the number of steps not to diverge too fast compared to the number of covariates. At most, *K* can increase by the logarithmic rate of *p*. This assumption is reasonable because if *K* increases too fast, then more irrelevant covariates will be selected. For the last aspect, we restrict the number of covariates so that it can not increase faster than the exponential rate of the sample size. This condition is wildly-used in the high-dimensional literature about variable selection, i.e., the \(l_1 \)-penalization achieves the \(O\left(\sqrt{\log p \over n}\right) \) rate. For Assumption 6 (ii), it is a technical assumption that further restricts the divergence rate of *K*. It is prepared for the prediction consistency of quantile forward regression. This assumption is more relaxed than a similar condition in assumption 1 of Shi and Huang (2021).

4.1.1 Asymptotic consistency of \(\hat{\beta}_S \)

Theorem 4.1. If Assumptions 1, 2, 3, 4, and 6 hold, then

\[
\max_{1 \leq k \leq K} \max_{|S| \leq k} \left\| \hat{\beta}_S - \beta^0_S \right\| = O_p\left(\sqrt{K \log p \over n} \right)
\]

As a remark, Theorem 4.1 establishes the \(O_p\left(\sqrt{K \log p \over n} \right) \) consistency rate with \(\hat{\beta}_S \) and \(\beta^0_S \). This convergence rate is consistent with the rate in Lee and Shin (2021), which consider the complete subset prediction in quantile regression. This result is consistent with our intuition since *K*-step forward regression only chooses a subset of all possible combinations of covariates. Therefore, the uniform convergence rate should be similar to the complete subset approach. It is worth mentioning that we do not need to consider the uniform result over all possible subsets in forward quantile regression, so our result is more flexible. In addition, our convergence rate is comparable with Shi and Huang (2021), which use the least square forward regression in panel data. Their convergence rate is \(O_p\left(\sqrt{K^3 \log p \over n} \right) \) in our notation. Our results differ in the power of *K* but share the same \(\sqrt{\log p \over n} \) factor that wildly appears in the high-dimensional literature. Indeed, the difference in the
Lemma 4.2. For any sequence of sets $U \subseteq \mathbb{R}^p$ asymptotically.

Based on the consistency of parameters, the following lemma presents the negligible difference in probability between $\hat{\rho}_{\tau, \hat{S}} = \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau} \left(y_i - \mathbf{x}_{i, \hat{S}}^T \hat{\beta}_{\hat{S}} \right)$ and $\rho_{\tau, \hat{S}} = E \rho_{\tau} \left(y_i - \mathbf{x}_{i, \hat{S}}^T \hat{\theta}_{\hat{S}}^0 \right)$. This approximation is prepared for the asymptotic efficacy result later.

Corollary 4.1. Denote $\hat{\rho}_{\tau, \hat{S}} = \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau} \left(y_i - \mathbf{x}_{i, \hat{S}}^T \hat{\beta}_{\hat{S}} \right)$ and $\rho_{\tau, \hat{S}} = E \rho_{\tau} \left(y_i - \mathbf{x}_{i, \hat{S}}^T \hat{\theta}_{\hat{S}}^0 \right)$. Given the conditions in Theorem 4.1, we have

$$\max_{1 \leq k \leq K} \max_{|S| \leq k} \left| \hat{\rho}_{\tau, \hat{S}} - \rho_{\tau, \hat{S}} \right| = O_p \left(\sqrt{\frac{K^2 \log p}{n}} \right)$$

As we can notice, the probabilistic difference between $\hat{\rho}_{\tau, \hat{S}}$ and $\rho_{\tau, \hat{S}}$ converges at rate $O_p \left(\sqrt{\frac{K^2 \log p}{n}} \right)$, which is slightly larger than the consistency rate of $\hat{\beta}$. Given the rate of Assumption 6, we know $O_p \left(\sqrt{\frac{K^2 \log p}{n}} \right) = o_p (1)$. Hence, this probabilistic difference is negligible. Based on this result, we can further consider the asymptotic efficacy when the true model is sparse with level s_0 in the next subsection.

4.1.2 Asymptotic efficacy

In this subsection, we investigate the asymptotic efficacy, which considers quantile loss consistency. The following Theorem 4.2 is a quantile-type analog of theorem 2 in Shi and Huang (2021). Our asymptotic efficacy emphasizes that the quantile forward regression can produce an excellent approximation of quantile prediction loss on the correctly specified model while the true sparsity level s_0 is dominated by the number of steps K asymptotically. This proof procedure follows the proof of forward selection in Shi and Huang (2021), but we focus on the quantile forward regression.

The following Lemma 4.1 shows every step in the quantile forward regression contributes to narrowing down the difference between two quantile losses within two index sets. The Lemma 4.2 considers the overall difference between the selected index set and an arbitrary fixed set.

Lemma 4.1. For any set $U, V \subseteq [p]$ such that $U \supseteq V$ and $u = |U| > |V| = v$, we have

$$\max_{\{x\} \subseteq U} \rho_{\tau} (V) - \rho_{\tau} (V \cup \{x\}) \geq \frac{\phi_{\min} (u) (J)}{\phi_{\max} (u) (J)} \frac{1}{u - v} (\rho_{\tau} (V) - \rho_{\tau} (U))$$

We define the following sequences of index sets to show the next lemma,

$$U_K (\kappa) = \left\{ \left(U_1, \ldots, U_K \right) \in [p]^K \mid \begin{array}{l} U_{k-1} \subset U_k, \left| U_k \backslash U_{k-1} \right| = 1 \\ \rho_{\tau} (U_{k-1}) - \rho_{\tau} (U_k) \geq (1 - \kappa) \max_{j \in [p]} \rho_{\tau} (U_{k-1}) - \rho_{\tau} (U_k \cup \{j\}) \end{array} \right\}$$

Lemma 4.2. For any sequence of sets $(U_1, \ldots, U_K) \in U_K (\kappa)$ and any $W \subseteq [p]$ with $|W| = w$, we
have
\[
\rho_r(U_K) - \rho_r(W) \leq \rho_r(0) \left(1 - (1 - \kappa) \frac{\phi_{\min}(w + K) (J) 1}{\phi_{\max}(w + K) (J) w} \right)^K
\]

Based on two previous lemmas, we can state the following theorem for asymptotic efficacy.

Theorem 4.2. Under the conditions in Theorem 4.1, for any \(S_0\) with \(|S_0| = s_0\) satisfying \(s_0 \rightarrow 0\) and \(\frac{s_0^2 K^2 \log p}{n} \rightarrow 0\) as \(p \rightarrow \infty\) and \(n \rightarrow \infty\), we have
\[
P \left(\frac{1}{n} \sum_{i=1}^{n} \rho_{r} \left(y_i - \mathbf{x}_{i,S_0} \hat{\beta}_{S_0} \right) - E \rho_{r} \left(y_i - \mathbf{x}_{i,S_0} \beta_{S_0} \right) \leq \delta \right) \rightarrow 1
\]
for any universal constant \(\delta > 0\).

As the theorem 4.2 shown above, the quantile forward regression can eventually control the difference between the empirical quantile loss and the optimal quantile loss as long as the number of steps \(K\) dominates the number of optimal covariates \(s_0\). Since we allow model misspecification, the optimal covariates can be true covariates or the best covariates to approximate the linear quantile model. In addition, we do not restrict \(s_0\) to be finite or not in the theorem. If \(s_0\) is fixed, the result is intuitive since when \(K\) diverges to \(\infty\), all optimal covariates will be selected in the end. Even if \(s_0\) diverges, as long as it is dominated by \(K\) and satisfies the rate condition \(\frac{s_0^2 K^2 \log p}{n} \rightarrow 0\), our asymptotic results still hold for quantile forward regressions.

5 Monte Carlo simulations

In this section, we present Monte Carlo simulations to investigate the finite sample performance of quantile forward regression. We focus on \(K\)-step quantile forward regression and compare our results with \(l_1\)-penalized quantile regression. Our Monte Carlo experiments contain two parts. The first part is based on pure numerical simulations, while the second part, which is application-based, considers the data generating process from the GaR application in the next application section.

5.1 Numerical simulations

In this subsection, we consider two types of linear quantile regression models: high-dimensional spare model and high-dimensional dense model. We illustrate the performance comparison between \(K\)-step quantile forward selection, \(l_1\)-penalized quantile regression, and the oracle quantile regression estimators. The following gives a brief introduction to each estimator.

1. \(K\)-step QFR: \(K\)-threshold quantile forward selection in Algorithm 1. In the simulation, the tuning parameter \(K\) is determined by a quantile-type modified BIC adapted from Wang et al. (2009). More explicitly, the number of steps \(K\) is chosen by
\[
K_{BIC} = \arg \min_{K \in \mathbb{N}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \rho_{r} \left(y_i - \mathbf{x}_{i,S_{K}} \hat{\beta}_{S_{K}} \right) + \frac{K \log \log p \log n}{n} \right\}
\]
2. \(l_1\)-QR: The \(l_1\)-penalized quantile regression estimator is defined as follows. The tuning parameter \(\lambda\) is chosen by the BIC in the “rqPen” R package.

\[
\hat{\beta} = \arg \min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(y_i - x_i^T \beta) + \lambda |\beta|_1
\]

3. Oracle: If the model is sparse, \(S^*\) is assumed to be known, and we use traditional quantile regression. As for the dense model, we do not have the oracle estimator.

The data generating process adheres to the following linear quantile regression setup. For each \(i = 1, \ldots, n\), we let

\[
\begin{align*}
 y_i &= x_i^T \beta_0 + \varepsilon_i \\
 x_{ij} &\sim N(0,1), \text{corr}(x_{ij}, x_{ik}) = \rho^{|j-k|} \\
 \varepsilon_i &\sim N(0, \sigma) - \sigma \Phi^{-1}(\tau)
\end{align*}
\]

where \(\beta_0 \in \mathbb{R}^p\), \(\varepsilon_i\) are independent across \(i\), and \(\Phi^{-1}\) is the inverse cumulative density function of standard normal distribution. Under this setup, it is obvious that the linear conditional quantile condition of \(y\),\(Q_y(\tau|x_i) = x_i^T \beta_0\), is satisfied. We consider two sets of simulations for both sparse and dense models. We run \(S = 1000\) replications for each DGP. We let \(n = 50, p = 100\) or \(n = 100, p = 200\) to mimic the high-dimensionality issue. Different choices of noise ratio \(\sigma = 0.1, 1\) and correlation levels between covariates \(\rho = 0, 0.5\) are also imposed.

In the sparse model setup, we set the number of true covariates, with \(s_0 = 4\), and let corresponding coefficients \(\beta_1 = \beta_2 = \beta_3 = \beta_4 = 1\). For other coefficients, we let \(\beta_{i>4} = 0\). As for the dense model, we let \(\beta_1 = \beta_2 = \beta_3 = \beta_4 = 1\) as before but set \(\beta_{i>4} \sim \text{Unif}(-0.1, 0.1)\).

To compare the performances among \(K\)-step QFR and \(l_1\)-QR, we use the following measurements for the sparse model.

1. The average mean quantile prediction error (MQPE) defined as \(\frac{1}{S} \sum_{s=1}^{S} \left\{ \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(x_i^T \hat{\beta}_0 - x_i^T \hat{\beta}) \right\}^{(s)}\).

2. The exact selection rate (ESR) in the sense that \(r_e = 1\) if \(\hat{S} = S^* = \{1, 2, 3, 4\}\); otherwise, \(r_e = 0\). We calculate the average exact selection rate by \(\frac{1}{S} \sum_{s=1}^{S} r_e^{(s)}\).

3. The selection rate (SR) in the sense that \(r_{sr} = 1\) if \(S^* = \{1, 2, 3, 4\} \subseteq \hat{S}\); otherwise, \(r_{sr} = 0\). We calculate the average selection rate by \(\frac{1}{S} \sum_{s=1}^{S} r_{sr}^{(s)}\).

For the dense model, we consider the following two criteria.

1. The mean quantile prediction error (MQPE) defined as \(\frac{1}{S} \sum_{s=1}^{S} \left\{ \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(x_i^T \beta_0 - x_i^T \hat{\beta}) \right\}^{(s)}\).

2. The average number of selected covariates (NS) defined as \(\frac{1}{S} \sum_{s=1}^{S} \|\beta^{(s)}\|_0\).
The following Tables 1, 2, and 3 show our comparison results for sparse and dense setups.

Table 1: Sparse model: MQPE, ESR, and SR comparison among K-step QFR, l_1-QR, and Oracle model.

<table>
<thead>
<tr>
<th>τ</th>
<th>$\sigma = 0.1, \rho = 0$</th>
<th>$\sigma = 1, \rho = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n = 50, p = 100$</td>
<td>$n = 100, p = 200$</td>
</tr>
<tr>
<td></td>
<td>MQPE</td>
<td>ESR</td>
</tr>
<tr>
<td>0.05</td>
<td>K-step QFR</td>
<td>0.0477</td>
</tr>
<tr>
<td></td>
<td>l_1-QR</td>
<td>0.0861</td>
</tr>
<tr>
<td></td>
<td>Oracle</td>
<td>0.0255</td>
</tr>
<tr>
<td>0.50</td>
<td>K-step QFR</td>
<td>0.0174</td>
</tr>
<tr>
<td></td>
<td>l_1-QR</td>
<td>0.0822</td>
</tr>
<tr>
<td></td>
<td>Oracle</td>
<td>0.0134</td>
</tr>
<tr>
<td>0.95</td>
<td>K-step QFR</td>
<td>0.0490</td>
</tr>
<tr>
<td></td>
<td>l_1-QR</td>
<td>0.0852</td>
</tr>
<tr>
<td></td>
<td>Oracle</td>
<td>0.0254</td>
</tr>
</tbody>
</table>

Note: This table is based on 1000 replications for each cell. Each number in the MQPE, ESR, and SR columns reports the average mean quantile prediction error, exact selection rate, and selection rate, respectively, following the definition above. The model in each case follows simulation model (1) with n, p, σ, ρ defined on the top of the table and one of the three methods (K-step QFR, l_1-QR, and Oracle) is stated on the left. For each case, we examine $\tau \in \{0.05, 0.50, 0.90\}$.

19
Table 2: Sparse model: MQPE, ESR, and SR comparison among K-step QFR, l_1-QR, and Oracle model

<table>
<thead>
<tr>
<th>τ</th>
<th>MQPE</th>
<th>ESR</th>
<th>SR</th>
<th>MQPE</th>
<th>ESR</th>
<th>SR</th>
<th>MQPE</th>
<th>ESR</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-step QFR</td>
<td>0.0381</td>
<td>0.371</td>
<td>0.989</td>
<td>0.0258</td>
<td>0.215</td>
<td>1</td>
<td>0.0381</td>
<td>0.371</td>
<td>0.989</td>
</tr>
<tr>
<td>0.05</td>
<td>l_1-QR</td>
<td>0.0950</td>
<td>0.28</td>
<td>0.998</td>
<td>0.0565</td>
<td>0.233</td>
<td>1</td>
<td>0.0950</td>
<td>0.28</td>
</tr>
<tr>
<td>Oracle</td>
<td>0.0255</td>
<td>1</td>
<td>1</td>
<td>0.0169</td>
<td>1</td>
<td>1</td>
<td>0.0255</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K-step QFR</td>
<td>0.0170</td>
<td>0.652</td>
<td>1</td>
<td>0.0113</td>
<td>0.826</td>
<td>1</td>
<td>0.0170</td>
<td>0.652</td>
<td>1</td>
</tr>
<tr>
<td>0.50</td>
<td>l_1-QR</td>
<td>0.0940</td>
<td>0.237</td>
<td>1</td>
<td>0.0513</td>
<td>0.318</td>
<td>1</td>
<td>0.0940</td>
<td>0.237</td>
</tr>
<tr>
<td>Oracle</td>
<td>0.0134</td>
<td>1</td>
<td>1</td>
<td>0.0096</td>
<td>1</td>
<td>1</td>
<td>0.0134</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K-step QFR</td>
<td>0.0382</td>
<td>0.354</td>
<td>0.989</td>
<td>0.0262</td>
<td>0.197</td>
<td>1</td>
<td>0.0382</td>
<td>0.354</td>
<td>0.989</td>
</tr>
<tr>
<td>0.95</td>
<td>l_1-QR</td>
<td>0.0947</td>
<td>0.251</td>
<td>0.998</td>
<td>0.0558</td>
<td>0.265</td>
<td>1</td>
<td>0.0947</td>
<td>0.251</td>
</tr>
<tr>
<td>Oracle</td>
<td>0.0254</td>
<td>1</td>
<td>1</td>
<td>0.0168</td>
<td>1</td>
<td>1</td>
<td>0.0254</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: This table is based on 1000 replications for each cell. Each number in the MQPE, ESR, and SR columns reports the average mean quantile prediction error, exact selection rate, and selection rate, respectively, following the definition above. The model in each case follows simulation model (1) with n, p, σ, ρ defined on the top of the table and one of the three methods (K-step QFR, l_1-QR, and Oracle) is stated on the left. For each case, we examine $\tau \in \{0.05, 0.50, 0.90\}$.
Table 3: Dense model: MQPE, ESR, and SR comparison between K-step QFR and l₁-QR

<table>
<thead>
<tr>
<th>τ</th>
<th>K-step QFR</th>
<th>l₁-QR</th>
<th>K-step QFR</th>
<th>l₁-QR</th>
<th>K-step QFR</th>
<th>l₁-QR</th>
<th>K-step QFR</th>
<th>l₁-QR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 50, p = 100</td>
<td></td>
<td>n = 100, p = 200</td>
<td></td>
<td>n = 50, p = 100</td>
<td></td>
<td>n = 100, p = 200</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>MQPE</td>
<td>NS</td>
<td>MQPE</td>
<td>NS</td>
<td>MQPE</td>
<td>NS</td>
<td>MQPE</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>0.4885</td>
<td>4.703</td>
<td>0.3994</td>
<td>6.526</td>
<td>0.4558</td>
<td>4.384</td>
<td>0.4065</td>
<td>6.401</td>
</tr>
<tr>
<td></td>
<td>0.5257</td>
<td>10.761</td>
<td>0.4676</td>
<td>18.183</td>
<td>0.4576</td>
<td>8.955</td>
<td>0.4191</td>
<td>14.967</td>
</tr>
<tr>
<td>0.50</td>
<td>K-step QFR</td>
<td>l₁-QR</td>
<td>K-step QFR</td>
<td>l₁-QR</td>
<td>K-step QFR</td>
<td>l₁-QR</td>
<td>K-step QFR</td>
<td>l₁-QR</td>
</tr>
<tr>
<td></td>
<td>0.3332</td>
<td>4.319</td>
<td>0.3246</td>
<td>4.401</td>
<td>0.3420</td>
<td>4.095</td>
<td>0.3454</td>
<td>4.461</td>
</tr>
<tr>
<td></td>
<td>0.3711</td>
<td>24.622</td>
<td>0.3814</td>
<td>38.253</td>
<td>0.3407</td>
<td>17.041</td>
<td>0.3708</td>
<td>26.834</td>
</tr>
<tr>
<td>0.95</td>
<td>K-step QFR</td>
<td>l₁-QR</td>
<td>K-step QFR</td>
<td>l₁-QR</td>
<td>K-step QFR</td>
<td>l₁-QR</td>
<td>K-step QFR</td>
<td>l₁-QR</td>
</tr>
<tr>
<td></td>
<td>0.4857</td>
<td>4.672</td>
<td>0.3980</td>
<td>6.498</td>
<td>0.4612</td>
<td>4.460</td>
<td>0.4085</td>
<td>6.377</td>
</tr>
<tr>
<td></td>
<td>0.5247</td>
<td>10.72</td>
<td>0.4732</td>
<td>18.488</td>
<td>0.4553</td>
<td>8.871</td>
<td>0.4200</td>
<td>15.156</td>
</tr>
</tbody>
</table>

Note: This table is based on 1000 replications for each cell. Each number in the MQPE and NS columns report the average mean quantile prediction error and number of selected variables, respectively, following the definition above. The model in each case follows simulation model (1) with n, p, σ, ρ defined on the top of the table and one of the two methods (K-step QFR and l₁-QR) is stated on the left. For each case, we examine τ ∈ {0.05, 0.50, 0.95}.

For the sparse model, the results are shown in Tables 1 and 2. The K-step QFR outperforms l₁-QR in terms of MQPE in most scenarios except the cases σ = 1, ρ = 0.5 with small sample size n = 50, p = 100 and extreme τ = 0.05, 0.95. Our explanation is that when sample size n is small, the number of effective samples for quantile regression at tail quantiles (τ = 0.05, 0.95 in our simulation) is small; hence the estimation of quantile regression in every step of QFR becomes unstable. Intuitively, this issue should be alleviated when we increase the sample size n. We can see this pattern in which K-step QFR performs better with n = 100, p = 200. In addition, the exact selection ratio (ESR) of K-step QFR is better than l₁-QR across all cases. We find that l₁ penalization method can hardly choose the exact number of true covariates, and it always tends to include many irrelevant covariates. This characteristic is consistent with the high-dimensional literature, and it impacts the prediction performance of l₁-QR. However, for K-step QFR, it always has the potential to select the true covariates exactly, especially when τ = 0.5.

From the dense model results in Table 3, it is clear that K-step QFR dominates l₁-QR in terms of MQPE performance across all cases in table 3. Note that the dense model is trying to imitate the model misspecification issue, so we do not have the Oracle method. In our dense DGP, we set the 4 most important independent variables. As we can see in the table, the average number of selected variables is between 4 to 7 for K-step QFR with modified BIC and l₁-penalized QR selects many more covariates. One possible explanation is that we directly choose our number of steps K in K-step QFR while l₁-QR selects the penalty parameter, which is λ. The penalty parameter indirectly controls the number of selected variables. Therefore, in the dense model setup, l₁-QR is more likely to be affected by those small but unimportant coefficients.

5.2 Application-based simulations

To complement our pure numerical simulation, we consider another experiment that is based on the real-world dataset. In the empirical dataset, the cross-sectional dependence across variables or
predictors usually exists and might have an impact on econometric methods. In macroeconomics, a lot of independent variables or predictors are well-structured and thus highly correlated, e.g., the producer price index for industrial commodities, intermediate products and finished consumer goods. This problem is even more severe when the dimension of covariates is large. Therefore, it is reasonable to investigate finite sample performance with simulations based on real data.

Our simulation is based on Fred-QD dataset from McCracken and Ng (2020) (see more description in the next empirical application section). We set \(n = 194 \) and \(p = 231 \), which are the same as the empirical application part. We focus on \(\tau = 0.05 \) and assume a linear model as follows

\[
y_i = \alpha_0 + x_i^T \beta_0 + \varepsilon_i
\]

where the variance-covariance matrix of \(x_i \) is calculated from the empirical dataset. We assume \(Q_\tau (y_i | x_i) = x_i^T \beta_0 \) and set \(x_{ij} \sim N(0,1) \) and independent error term \(\varepsilon_i \sim N(0,1) \). Similarly, we consider both sparse and dense models. For the sparse model, we randomly set four \(\beta_j = 1 \) for \(j \in [p] \) in every simulation and set other \(\beta_j \)s equal to 0. For the dense model, those un-selected \(\beta_j \)s follow \(Unif(-0.05,0.05) \). The number of simulations \(S \) is 200 for both models. We evaluate the performance with MQPE and NS with the dense model setting in the following Table 4.

<table>
<thead>
<tr>
<th>(\tau = 0.05)</th>
<th>Sparse DGP</th>
<th>Dense DGP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K)-step QFR</td>
<td>0.0803</td>
<td>0.0829</td>
</tr>
<tr>
<td>(l_1)-QR</td>
<td>0.1386</td>
<td>0.1508</td>
</tr>
</tbody>
</table>

Note: This table is based on 200 replications for each cell. Each number in the MQPE and NS columns reports the average mean quantile prediction error and the number of selected variables, respectively, following the definition above. For each case, we examine the case with \(\tau = 0.05 \).

Overall, the performance of \(K \)-step QFR is satisfactory compared to \(l_1 \)-QR. In summary, \(K \)-step QFR has a smaller average prediction error, and the number of selected covariates is close to the number of true or important covariates, which is 4 in our setup. This result confirms that \(K \)-step QFR behaves well in model selection and prediction accuracy, even if there are high cross-sectional dependence structures among the covariates.

6 Empirical applications

We conduct two empirical applications in this section. The first part is growth-at-risk (GaR) forecasting. We consider predicting the tail risk of the GDP growth rate using a high-dimensional Fred dataset from McCracken and Ng (2020). In the second application, we investigate the international economic growth convergence hypothesis from the quantile regression aspect using the famous cross-sectional dataset in Barro and Lee (1994).
6.1 Growth-at-Risk prediction example with Fred dataset

In this subsection, we investigate an empirical application of the prediction of growth-at-risk. GaR measures the extremely negative impact, i.e., the left tail risk, on the GDP growth rate, and it attracts more attention for empirical macroeconomic researchers nowadays. Adrian et al. (2019) first use simple quantile regression with the national financial condition index (NFCI) as the key variable to predict the GaR. Brownlees and Souza (2021) further compare the prediction performance of quantile regression with traditional volatility models, like GARCH, in this topic. Plagborg-Møller et al. (2020) use quantile regression with extracted financial and global factors to argue the predictability of GaR. Unlike previous research that only considers one or a few variables or factors, our empirical example utilizes high-dimensional data. With the assistance of abundant data, we can first consider the selection of influential predictors and then conduct proper forecasting on GaR. Our data source is the Fred-QD dataset, which is provided by McCracken and Ng (2020). This dataset contains the quarterly GDP growth rate of the United States as the response variable and $p = 231$ time series for explanatory variables. We transform all variables into stationary series by the instructions in McCracken and Ng (2016). In addition, since macroeconomic variables are highly correlated if they belong to the same statistical category, a suitable variable selection approach seems important. To make use of as many predictors as possible, we set the truncated sample period from 1973Q1 to 2021Q2 with $n = 194 < p$, so this application suffers high-dimensionality issue. We consider the linear predictive quantile regression at $\tau = 0.05$

$$Q_{\tau=0.05}(y_t|\mathcal{F}_{t-1}) = \alpha_0 + x_{t-1}^T \beta_0$$

In the application, we use a moving window with fixed 100 quarters as in-sample periods and compare both one-period and four-periods ahead prediction performance between K-step simple forward quantile regression and l_1-QR. For these methods, we use modified BIC to select the tuning parameter K and consider BIC to select the tuning parameter λ. We report the average prediction error and the average number of selected variables in Table 5 below.

<table>
<thead>
<tr>
<th>$\tau = 0.05$</th>
<th>1 period ahead</th>
<th>4 periods ahead</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-step QFR</td>
<td>MQPE</td>
<td>NS</td>
</tr>
<tr>
<td>l_1-QR</td>
<td>0.144</td>
<td>3.828</td>
</tr>
<tr>
<td></td>
<td>0.406</td>
<td>99</td>
</tr>
</tbody>
</table>

Note: The entries in this table are based on 94 fixed window prediction periods for 1-period ahead forecasting or 91 periods for 4-periods ahead forecasting. Each number in the MQPE and NS columns reports the average mean quantile prediction error and number of selected variables respectively following the definition above. For each case, we examine the case with $\tau = 0.05$.

In sum, we confirm that K-step QFR offers stable prediction performance and selects a relatively small number of important covariates. It outperforms l_1-QR on both criteria, and this result is consistent with our extensive simulations. We also show that l_1-QR is not very helpful in variable...
dimension reduction while handling real-world macroeconomic data.

6.2 Cross-sectional international growth example in Barro and Lee (1994)

We examine an international economic growth example from Barro and Lee (1994) in the subsection. Barro and Lee (1994) consider the effect of the initial level of per capita GDP on the GDP per capita growth rate. If this effect is negative empirically, the result should suggest a convergence of growth rates among the poorer nations and wealthier nations. This is also called the convergence hypothesis. Barro and Sala-i Martin (1995) use a simple bivariate regression to investigate this effect, and their results reject the theoretical hypothesis. Since then, the literature has tried to include other cross-sectional predictors and examine whether this effect holds conditioning on other variables. In addition to the literature that focuses on the least square framework, Koenker and Machado (1999) investigate the quantile regression effect (the international economic growth risk) of this issue and provide explanations based on the quantile type goodness-of-fit. The quantile regression approach can provide more insights in terms of robustness.

Recently, since the number of predictors that the literature includes is relatively large compared to the sample size, some researchers have started to use high-dimensional tools to examine this question, see Giannone et al. (2021). When the dimension of covariates is comparably high, a suitable variable section approach becomes a critical issue. For example, Belloni et al. (2011) use the Post-square-root-Lasso method and the Post-double-selection method to provide variable selection results for the international growth least square regression. In our case, we focus on the economic growth risk from the quantile perspective and apply our K-step quantile forward regression to conduct variable selection issues.

Our data source is from the “GrowthData” dataset in the “hdm” r-package provided by Chernozhukov et al. (2016). It is a cross-sectional international growth dataset that contains \(n = 90 \) observations and \(p = 62 \) covariates. We consider the linear quantile regression model for \(i = 1, \ldots, n \) as the following,

\[
Q_\tau (y_i | d_i, x_i) = \delta_0 + \alpha_0 d_i + \sum_{j=1}^{p-1} \beta_{0j} x_j
\]

where \(y_i \) is the average GDP growth rate between 1960-1985 for each country as the response variable, \(d_i \) is the logarithm of the nation’s GDP in 1960 (initial GDP level), and \(x_j, j = 1, \ldots, 61 \) denotes other control covariates that measure different nation-specific characteristics in the pre-1960 period, including national accounts, education, trade policy, political circumstance, and others. The terms \(\alpha_0 \) and \(\beta_{0j} \) are corresponding parameters and \(\delta_0 \) is the intercept term. Since we plan to check the quantile effect of the logarithm of initial GDP level \(d_i \) on the average growth rate \(y_i \), \(d_i \) is always included in the model, and we use the quantile forward regression algorithm on other covariates \(x_j \). The application considers 19 evenly distributed choices of \(\tau \) from 0.05 to 0.95. We show the results from K-step quantile forward regression for covariate selection. Since \(p \) is not larger than \(n \), we use BIC to select the tuning parameters \(K \). We report the covariate selection results for different \(\tau = 0.05, 0.25, 0.50, 0.75, 0.95 \) in Table 6 below. A complete result for all \(\tau \) is provided in
the appendix.

Table 6: Variable selection result for the international growth example with K-step quantile forward regression (Real per capita GDP (log) is always included)

<table>
<thead>
<tr>
<th>τ</th>
<th>Additional variables selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td></td>
<td>Population proportion over 64</td>
</tr>
<tr>
<td></td>
<td>Terms of trade shock</td>
</tr>
<tr>
<td></td>
<td>Percentage of "no schooling" in the male population</td>
</tr>
<tr>
<td></td>
<td>Infant mortality rate</td>
</tr>
<tr>
<td></td>
<td>Ratio of nominal government current expenditure on the defense to nominal GDP</td>
</tr>
<tr>
<td>0.25</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td>0.50</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td>0.75</td>
<td>Total gross enrollment ratio for primary education</td>
</tr>
<tr>
<td></td>
<td>Total gross enrollment ratio for primary education</td>
</tr>
<tr>
<td></td>
<td>Ratio of domestic investment to real GDP</td>
</tr>
<tr>
<td>0.95</td>
<td>Percentage of "no schooling" in the female population</td>
</tr>
<tr>
<td></td>
<td>Infant mortality rate</td>
</tr>
<tr>
<td></td>
<td>Exchange rate</td>
</tr>
</tbody>
</table>

Our variable selection result sheds some light on the choice of conditioning variables. For the downside economic growth risk, the logarithm of black market premium shows strong signals. In Belloni et al. (2011), they also select this covariate in the least square regression by the square-root Lasso. Therefore, the logarithm of black market premium not only has an impact on the mean level, but also influences the lower quantile levels. This finding is also consistent with the result of Koenker and Machado (1999), suggesting market openness in a country plays an important role in long-term economic growth distribution. For the upper quantiles, we find that the total gross enrollment ratio for primary education seems important. This indicates that education determines the potential level of high economic growth. Based on our additional selected variables, we can further examine the estimated quantile regression effect of the initial logarithm of per capita GDP (d_i) on the economic growth rate (y_i). The following Table 7 and Figure 1 show the result from squared-root-Lasso, the estimated coefficients $\hat{\alpha}$ after the variable selection procedure by K-step QFR, and its confidence bands across τ. In Figure 1, the solid red line is the estimated quantile regression effect $\hat{\alpha}$ seen in Table 7. The dashed light red line and dashed dark red line are the upper and lower 95% confidence bands. The black dashed line is a horizontal line at -0.0112, indicating the coefficient estimated by post-square-root Lasso in Belloni et al. (2011). The estimated $\hat{\alpha}$ is negative for all quantile levels, which is consistent with the convergence hypothesis that the poorer countries grow faster and the wealthier countries grow slower. Our results complement the findings of Belloni et al. (2011). Besides that, the quantile regression approach indicates more on the conditional distribution compared to the mean regression. Since our results suggest a decrease in $\hat{\alpha}$ for larger τ, this indicates a stronger convergence on the right tail of growth rate than on the left tail. This evidence confirms the results in Koenker and Machado (1999).
Figure 1: Estimated quantile regression effect $\hat{\alpha}$ and 95% confidence bands

Note: The figure illustrates the estimated quantile regression effect $\hat{\alpha}$ across all τ from 0.05 to 0.95. $\hat{\alpha}$ (red solid line) measures the effect of the initial level of GDP per capita on the per capita GDP growth rate. The two red dashed lines are the 95% confidence interval generated in the post selection. In most cases, these bands exclude the null effect indicated by the horizontal 0 line. The black dashed line is the estimated effect of mean regression by the Post-square-root-Lasso in Belloni et al. (2011).

<table>
<thead>
<tr>
<th>τ</th>
<th>$\hat{\alpha}$</th>
<th>τ</th>
<th>$\hat{\alpha}$</th>
<th>τ</th>
<th>$\hat{\alpha}$</th>
<th>τ</th>
<th>$\hat{\alpha}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>-0.0221</td>
<td>0.30</td>
<td>-0.0070</td>
<td>0.55</td>
<td>-0.0454</td>
<td>0.80</td>
<td>-0.0351</td>
</tr>
<tr>
<td>0.10</td>
<td>-0.0107</td>
<td>0.35</td>
<td>-0.0099</td>
<td>0.60</td>
<td>-0.0422</td>
<td>0.85</td>
<td>-0.0442</td>
</tr>
<tr>
<td>0.15</td>
<td>-0.0125</td>
<td>0.40</td>
<td>-0.010</td>
<td>0.65</td>
<td>-0.0410</td>
<td>0.90</td>
<td>-0.0494</td>
</tr>
<tr>
<td>0.20</td>
<td>-0.0019</td>
<td>0.45</td>
<td>-0.0088</td>
<td>0.70</td>
<td>-0.0251</td>
<td>0.95</td>
<td>-0.0307</td>
</tr>
<tr>
<td>0.25</td>
<td>-0.0067</td>
<td>0.50</td>
<td>-0.0112</td>
<td>0.75</td>
<td>-0.0245</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: This table reports the estimated quantile effect $\hat{\alpha}$ cross all $\tau = 0.05, \ldots, 0.95$. The numbers correspond to the red solid line in Figure 1.

As a summary, we utilize quantile forward regression to choose significant covariates in the international economic growth application. Our findings support and provide more information on the existing literature, which considers testing the convergence hypothesis in Barro and Lee (1994).

7 Conclusion

In this paper, we investigate the theoretical properties of quantile forward regressions, including K-step quantile forward regression and t-threshold quantile forward regression. We show that quantile forward regressions are useful in dealing with high-dimensionality issues in the linear quantile regression model. Under the non-asymptotic framework, we are able to show that the quantile forward
regressions satisfy similar performance bounds with the least square forward selection. From the asymptotic view, K-step quantile forward regression also satisfies desirable properties like the same $O\left(\sqrt{\frac{\log p}{n}}\right)$ convergence rate as penalization methods and prediction consistency. Numerical simulations illustrate that the quantile forward regressions have better performance in terms of prediction than l_1-penalized methods under either simple or complex data structures. These advantages indicate that quantile forward regression is a user-friendly and convenient tool for empirical researchers. Two empirical applications demonstrate its usefulness.

Finally, it is worth mentioning that there are many possible ways to expand the quantile forward regression. First, we only consider the asymptotic results for K-step quantile forward regression and omit the asymptotic analysis for t-threshold quantile forward regression. The connection between the two types of forward regression algorithms is generally unknown. It would be interesting if researchers could find a suitable asymptotic framework that links these two types together. Second, it would be also interesting to ask whether there is variable selection consistency, like in Fan and Li (2001), Zou (2006), or Lahiri (2021), for forward selection algorithms. If so, it is important to discover the underlying conditions and derive the result on selection consistency. Third, our analysis is based on cross-sectional data. It is also curious to extend quantile forward regression into other data structures, like time-series data or panel data. There is some recent development on the least square estimator, see Ing (2020), but it is an open question for the general regression models. We leave those extensions for future research.
References

A Proofs

A.1 Proof of lemma 3.1

Proof. Denote $x = x$. For $\beta_1, \beta_2 \in \Omega \subset \mathbb{R}^p$, following the definition 3 in Elenberg et al. (2018), we consider

$$D = R^1_\tau (\beta_2) - R^1_\tau (\beta_1) - \left\langle E \left[\frac{x^T (\tau - 1 (y - x^T \beta_1 < 0))}{E[\rho_{\tau} (y - \alpha)]} \right], \beta_2 - \beta_1 \right\rangle$$

Using famous Knight’s identity from Knight (1998), we have

$$D = - \frac{1}{E[\rho_{\tau} (y - \alpha)]} E \left[\rho_{\tau} (y - x^T \beta_2) - \rho_{\tau} (y - x^T \beta_1) \right] - \left\langle E \left[x^T (\tau - 1 (y - x^T \beta_1 < 0)) \right], \beta_2 - \beta_1 \right\rangle$$

$$= - \frac{1}{E[\rho_{\tau} (y - \alpha)]} E \left[x^T (\beta_2 - \beta_1) \psi_{\tau} (y - x^T \beta_1) \right] - \frac{1}{E[\rho_{\tau} (y - \alpha)]} \int_0^1 (y - x^T \beta_1 \leq s) - 1 (y - x^T \beta_1 \leq 0) \, ds$$

$$= - \frac{1}{E[\rho_{\tau} (y - \alpha)]} \left(\int_0^1 (\beta_2 - \beta_1)^T E f_{u_1} (x) x x^T (\beta_2 - \beta_1) \right)$$

$$= - \frac{1}{2 E[\rho_{\tau} (y - \alpha)]} (\beta_2 - \beta_1)^T E f_y (\xi + x^T \beta_1 | x) x x^T (\beta_2 - \beta_1)$$

where $u_1 = y - x^T \beta_1$, and $\xi \in (0, x^T (\beta_2 - \beta_1))$, $\xi' \in (0, x^T \beta_2)$.

Under the assumption above and using Rayleigh quotient with $0 < \lambda_{\min} (J) \leq J = E f_y (\xi \, | \, x) x x^T \leq \lambda_{\max} (J) < \infty$ in the support of (y, x), we have

$$- \frac{\lambda_{\min} (J_S)}{2 E[\rho_{\tau} (y - \alpha)]} \| \beta_2 - \beta_1 \|_2^2 \geq D \geq - \frac{\lambda_{\max} (J_S)}{2 E[\rho_{\tau} (y - \alpha)]} \| \beta_2 - \beta_1 \|_2^2$$

So $R^1_\tau (\cdot)$ satisfying restricted strong concavity with $\frac{\lambda_{\min}(J_S)}{E[\rho_{\tau}(y-\alpha)]}$ and restricted smoothness with $\frac{\lambda_{\max}(J_S)}{E[\rho_{\tau}(y-\alpha)]}$ on Ω. □
A.2 Proof of corollary 3.1

Proof. By theorem 3.2, we know that
\[Pr \left[\frac{1}{n} \sum_{i=1}^{n} \rho_{\tau} \left(y_{i} - x_{i,S_{K}}^{T} \beta_{S_{K}} \right) \leq \left(1 - e^{-\frac{\phi_{\min}(2K)(J)}{\phi_{\max}(2K)(J)}} \right) \left[\rho_{\tau} \left(y - x_{S_{K}}^{T} \beta_{S_{K}} \right) \right] + e^{-\frac{\phi_{\min}(2K)(J)}{\phi_{\max}(2K)(J)}} \right] \]
\[\geq Pr \left[\frac{1}{n} \sum_{i=1}^{n} \rho_{\tau} \left(y_{i} - x_{i,S_{K}}^{T} \beta_{S_{K}} \right) - E \left[\rho_{\tau} \left(y - x_{S_{K}}^{T} \beta_{S_{K}} \right) \right] \right] \leq \varepsilon \]
\[\geq 1 - e^{-\frac{1}{n} \sum_{i=1}^{n} \rho_{\tau} \left(y_{i} - x_{i,S_{K}}^{T} \beta_{S_{K}} \right) + \varepsilon} \]
where the second last inequality is from Bernstein inequality for i.i.d. random variables.

A.3 Proof of lemma 3.2

Proof. From the theorem 3.1 and $|\hat{S}| = K$, we know the weak submodularity ratio is bounded below by
\[\gamma_{\hat{S},s_{0}} \geq \frac{\phi_{\min}(K+s_{0})(J)}{\phi_{\max}(K+s_{0})(J)} \]

By the definition of weak submodularity ratio we have
\[\frac{\phi_{\min}(K+s_{0})(J)}{\phi_{\max}(K+s_{0})(J)} \leq \frac{\sum_{j \in S_{\hat{S}}} f \left(\hat{S} \cup \{ j \} \right) - f \left(S \right)}{f \left(\hat{S} \cup S^{*} \right) - f \left(\hat{S} \right)} \]

Since $f \left(\hat{S} \cup \{ j \} \right) - f \left(\hat{S} \right) < t$, we know
\[f \left(\hat{S} \cup S^{*} \right) - f \left(\hat{S} \right) \leq \frac{\phi_{\max}(K+s_{0})(J)}{\phi_{\min}(K+s_{0})(J)} \sum_{j \in S^{*} \setminus \hat{S}} f \left(\hat{S} \cup \{ j \} \right) - f \left(S \right) \]
\[\leq \frac{\phi_{\max}(K+s_{0})(J)}{\phi_{\min}(K+s_{0})(J)} s_{0} t \]

A.4 Proof of lemma 3.3

Proof. Since f is a non-decreasing monotone function by definition, the basic inequality holds naturally.
A.5 Proof of theorem 3.3

Proof. By lemma 3.2 and 3.3, we have

\[f(S^*) - f(S^\circ) \leq \frac{\phi_{\max}(K + s_0)(J)}{\phi_{\min}(K + s_0)(J)} s_0 t \]

which is equivalent with

\[E\left(\rho_r(y - x^T\beta_0) - (x^T\beta - x^T\beta_0)\right) \leq \frac{\phi_{\max}(K + s_0)(J)}{\phi_{\min}(K + s_0)(J)} s_0 t \]

Using Knight’s identity, we obtain

\[
E\left[-x^T(\hat{\beta} - \beta_0)\psi_r(y - x^T\beta_0) + \int_0^{x^T(\hat{\beta} - \beta_0)} 1(\varepsilon_0 \leq s) - 1(\varepsilon_0 \leq 0) \, ds \right] \leq \frac{\phi_{\max}(K + s_0)(J)}{\phi_{\min}(K + s_0)(J)} s_0 t
\]

where \(\varepsilon = y - x^T\beta_0 \). For some \(\xi \in (0, x^T(\hat{\beta} - \beta_0)) \), it follows that

\[
E\left[\int_0^{x^T(\hat{\beta} - \beta_0)} 1(\varepsilon_0 \leq s) - 1(\varepsilon_0 \leq 0) \, ds \right] \leq E\left|x^T(\hat{\beta} - \beta_0)\psi_r(y - x^T\beta_0)\right| + \frac{\phi_{\max}(K + s_0)(J)}{\phi_{\min}(K + s_0)(J)} s_0 t
\]

\[
E\left[\int_0^{x^T(\hat{\beta} - \beta_0)} F_{\varepsilon_0}(s) - F_{\varepsilon_0}(0) \, ds \right] \leq E\left|x^T(\hat{\beta} - \beta_0)\psi_r(y - x^T\beta_0)\right| + \frac{\phi_{\max}(K + s_0)(J)}{\phi_{\min}(K + s_0)(J)} s_0 t
\]

\[
E\left[\int_0^{x^T(\hat{\beta} - \beta_0)} s_{\varepsilon_0}(\xi_{\varepsilon}) \, ds \right] \leq E\left|x^T(\hat{\beta} - \beta_0)\psi_r(y - x^T\beta_0)\right| + \frac{\phi_{\max}(K + s_0)(J)}{\phi_{\min}(K + s_0)(J)} s_0 t
\]

\[
E\left((x^T\hat{\beta} - x^T\beta_0)^2\right) \leq \frac{2}{f_{\varepsilon_0}(\xi_{\varepsilon})} \left\|E\psi_r(y - x^T\beta_0)\right\|_\infty \|\hat{\beta} - \beta_0\|_2 + \frac{2}{f_{\varepsilon_0}(\xi_{\varepsilon})} \frac{\phi_{\max}(K + s_0)(J)}{\phi_{\min}(K + s_0)(J)} s_0 t
\]

Since we know \(\|\hat{\beta} - \beta_0\|_2 \leq \sqrt{K + s_0} \|\hat{\beta} - \beta_0\|_2 \leq \sqrt{K + s_0} \frac{E((x^T\hat{\beta} - x^T\beta_0)^2)^{\frac{1}{2}}}{\varphi_{\min}(K + s_0)(E(x^Tx))} \) where \(\varphi_{\min}(s)(G) = \min_{S \leq \|\hat{\beta} - \beta_0\|_2 \leq s} \lambda_{\min}(G_S) \) and \(G_S \) is the principal sub-matrix of \(G \), we have

\[
E\left((x^T\hat{\beta} - x^T\beta_0)^2\right) \leq \frac{2}{f_{\varepsilon_0}} \left\|E\psi_r(y - x^T\beta_0)\right\|_\infty \sqrt{K + s_0} \frac{1}{\varphi_{\min}(K + s_0)(E(x^Tx))} + \frac{2}{f_{\varepsilon_0}} \frac{\phi_{\max}(K + s_0)(J)}{\phi_{\min}(K + s_0)(J)} s_0 t \frac{1}{E\left((x^T\hat{\beta} - x^T\beta_0)^2\right)^{\frac{1}{2}}}
\]
\[
\text{If } E \left(\left(x^T \hat{\beta} - x^T \beta_0 \right)^2 \right)^{\frac{1}{2}} > \sqrt{\frac{2 \phi_{\max}(K + s_0) (J)}{\phi_{\min}(K + s_0) (J)}} s_0 t, \text{ then we have}
\]
\[
E \left(\left(x^T \hat{\beta} - x^T \beta_0 \right)^2 \right)^{\frac{1}{2}} \leq \frac{2}{\sqrt{x_0}} \left\| E x \psi_\tau \left(y - x^T \beta_0 \right) \right\|_\infty \sqrt{K + s_0} \frac{1}{\phi_{\min}(K + s_0) (E xx^T)}
\]
\[
+ \sqrt{\frac{2 \phi_{\max}(K + s_0) (J)}{\phi_{\min}(K + s_0) (J)}} s_0 t.
\]

Otherwise, the conclusion holds automatically.

The second argument follows from the definition of \(\rho_\tau \) and Jensen inequality,
\[
\rho_\tau \left(x^T \hat{\beta} - x^T \beta_0 \right) \leq E \left| x^T \hat{\beta} - x^T \beta_0 \right| \leq E \left(\left(x^T \hat{\beta} - x^T \beta_0 \right)^2 \right)^{\frac{1}{2}}
\]

\[\boxdot\]

A.6 Proof of theorem 4.1

Proof. Consider \(\delta_n = L \sqrt{\frac{K \log p}{n}} \) for some sufficient large constant \(L \), we define \(Q_S (\beta_S) = E \left[\rho_\tau \left(y_i - x_{i,S}^T \beta_S \right) \right] \). Moreover, we let
\[
D(\delta_n) = \inf_{|S|=K} \inf_{\|\beta_S - \beta_S^0\| > \delta_n} Q_S (\beta_S) - Q_S (\beta_S^0)
\]
and define
\[
S_S(\delta_n) = \left\{ \beta_S : \|\beta_S - \beta_S^0\| > \delta_n, \|\beta_S - \beta_S^0\| = o(1) \right\}
\]

Therefore, for any \(\beta_S \in S_S(\delta_n) \), we have
\[
Q_S (\beta_S) - Q_S (\beta_S^0) = E \left[\rho_\tau \left(y_i - x_{i,S}^T \beta_S \right) - \rho_\tau \left(y_i - x_{i,S}^T \beta_S^0 \right) \right]
\]
\[
= E \left[\rho_\tau \left(\varepsilon_i + u_i,S - x_{i,S}^T (\beta_S - \beta_S^0) \right) - \rho_\tau \left(\varepsilon_i + u_i,S \right) \right]
\]
\[
= E \left[\int_0^{x_{i,S}^T (\beta_S - \beta_S^0)} F_{\varepsilon_i} \left(-u_i,S + s|x_i\right) - F_{\varepsilon_i} \left(-u_i,S|\varepsilon_i \right) ds \right] + o(1)
\]
\[
\approx \frac{1}{2} \left(\beta_S - \beta_S^0 \right)^T A_S \left(\beta_S - \beta_S^0 \right)
\]
\[
\geq \frac{1}{2} \xi_0 \delta_n^2
\]

where we define \(u_i,S = y_i - x_{i,S}^T \beta_S^0 - \varepsilon_i \) and use Knight’s identity with \(-x_{i,S}^T (\beta_S - \beta_S^0) \psi_\tau \left(\varepsilon_i + u_i,S \right) = o_p(1) \).
Using Boole’s inequality, we have

\[
P \left(\max_{1 \leq k \leq K} \max_{|\hat{S}| \leq k} \left\| \hat{\beta}_S - \beta_0^S \right\| > \delta_n \right)
\]

\[
\leq K p (p - 1) \cdots (p - K) \max_{1 \leq k \leq K} \max_{|\hat{S}| \leq k} P \left(\left\| \hat{\beta}_S - \beta_0^S \right\| > \delta_n \right)
\]

\[
\leq K p^K \max_{1 \leq k \leq K} \max_{|\hat{S}| \leq k} P \left(Q_{\hat{S}}(\beta_0^S) - Q_S(\beta_0^S) \geq D(\delta_n) \right)
\]

\[
\approx K p^K \max_{1 \leq k \leq K} \max_{|\hat{S}| \leq k} P \left(W_{i,\hat{S}} \geq 2nD(\delta_n) \right)
\]

where \(W_{i,\hat{S}} = n \left(\beta_0^S - \beta_0^S \right)^T A_S \left(\beta_0^S - \beta_0^S \right) \).

Applying the same argument in the proof of theorem 3.2 of Lu and Su (2015) and theorem 2 of Lee and Shin (2021) with lemma 2.1 of Shibata (1981, 1982), we obtain

\[
P \left(\max_{1 \leq k \leq K} \max_{|\hat{S}| \leq k} \left\| \hat{\beta}_S - \beta_0^S \right\| > \delta_n \right) = o(1),
\]

which the statement follows.
A.7 Proof of corollary 4.1

Proof. By triangular inequality, we note that

\[
\max_{1 \leq k \leq K} \max_{|S| \leq k} \left| \rho_{r,S} - \rho_{r,S} \right|
\]

\[
= \max_{1 \leq k \leq K} \max_{|S| \leq k} \left| \frac{1}{n} \sum_{i=1}^{n} \rho_{r} \left(y_i - x_{i,S}^{T} \beta_{S} \right) - E \rho_{r} \left(y_i - x_{i,S}^{T} \beta_{0}^{0} \right) \right|
\]

\[
= \max_{1 \leq k \leq K} \max_{|S| \leq k} \left| \frac{1}{n} \sum_{i=1}^{n} \rho_{r} \left(y_i - x_{i,S}^{T} \hat{\beta}_{S} \right) - \frac{1}{n} \sum_{i=1}^{n} \rho_{r} \left(y_i - x_{i,S}^{T} \beta_{0}^{0} \right) \right|
\]

\[
+ \max_{1 \leq k \leq K} \max_{|S| \leq k} \left| \frac{1}{n} \sum_{i=1}^{n} \rho_{r} \left(y_i - x_{i,S}^{T} \beta_{0}^{0} \right) - E \rho_{r} \left(y_i - x_{i,S}^{T} \beta_{0}^{0} \right) \right|
\]

:= V_1 + V_2

For \(V_1 \),

\[
\max_{1 \leq k \leq K} \max_{|S| \leq k} \left| \frac{1}{n} \sum_{i=1}^{n} \rho_{r} \left(y_i - x_{i,S}^{T} \beta_{S} \right) - \frac{1}{n} \sum_{i=1}^{n} \rho_{r} \left(y_i - x_{i,S}^{T} \beta_{0}^{0} \right) \right|
\]

\[
\leq \max_{1 \leq k \leq K} \max_{|S| \leq k} \left| \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_{i,S}^{T} \beta_{S} \right) \left(\tau - 1 \left(y_i < x_{i,S}^{T} \beta_{S} \right) \right) - \left(y_i - x_{i,S}^{T} \beta_{0}^{0} \right) \left(y_i < x_{i,S}^{T} \beta_{0}^{0} \right) \right|
\]

\[
\leq \frac{1}{n} \sum_{i=1}^{n} \max_{1 \leq k \leq K} \max_{|S| \leq k} \left| x_{i,S}^{T} \left(\beta_{0}^{0} - \hat{\beta}_{S} \right) \right|
\]

\[
\leq \frac{1}{n} \sum_{i=1}^{n} \max_{1 \leq k \leq K} \max_{|S| \leq k} \left\| x_{i,S} \right\| \left\| \beta_{0}^{0} - \hat{\beta}_{S} \right\|
\]

\[
\leq C \sqrt{K} \max_{1 \leq k \leq K} \max_{|S| \leq k} \left\| \beta_{0}^{0} - \hat{\beta}_{S} \right\|
\]

\[
= O_p \left(\sqrt{\frac{K^2 \log p}{n}} \right)
\]

For \(V_2 \), by Hoeffding’s inequality with respect to \(\rho_{r} \left(y_i - x_{i,S}^{T} \beta_{0}^{0} \right) \), we have

\[
P \left(\left| \frac{1}{n} \sum_{i=1}^{n} \rho_{r} \left(y_i - x_{i,S}^{T} \beta_{0}^{0} \right) - E \rho_{r} \left(y_i - x_{i,S}^{T} \beta_{0}^{0} \right) \right| \geq L \sqrt{\frac{K^2 \log p}{n}} \right) \leq e^{- \frac{2L^2 n K^2 \log p}{\Sigma_{i=1}^n \epsilon_i}}
\]

\[
\leq e^{- \frac{L^2 K^2 \log p}{n}}
\]

\[
= o \left(1 \right)
\]

Therefore, we have \(V_2 = O_p \left(\sqrt{\frac{K^2 \log p}{n}} \right) \). So the lemma follows. \(\square \)
A.8 Proof of lemma 4.1

Proof. We first consider the weak submodularity of the negative quantile loss function $-\rho_{\tau}$. Following the same procedure in lemma 3.1 and theorem 3.1, we can derive

$$\gamma_{U,k} (-\rho_{\tau}) \geq \frac{\phi_{\min} (|U| + k) (J)}{\phi_{\max} (|U| + k) (J)}$$

for generic set U and number k.

By the definition of weak submodularity ratio $\gamma_{U,k} (-\rho_{\tau}) = \min_{L \subseteq U, S : |S| \leq k, S \cap L = \emptyset} \frac{\sum_{x \in L \cup \{x\}} \rho_{\tau} (S) - \rho_{\tau} (L \cup \{x\})}{\rho_{\tau} (L)}$ and the result above, we note that

$$\sum_{x \in U \setminus V} \rho_{\tau} (V) - \rho_{\tau} (V \cup \{x\}) \geq \gamma_{U,V} \geq \frac{\phi_{\min} (u) (J)}{\phi_{\max} (u) (J)}$$

Therefore, we obtain

$$(u - v) \frac{\max_{x \in U} \rho_{\tau} (V) - \rho_{\tau} (V \cup \{x\})}{\rho_{\tau} (V) - \rho_{\tau} (U)} \geq \frac{\phi_{\min} (u) (J)}{\phi_{\max} (u) (J)}$$

Rearranging the inequality,

$$\max_{\{x\} \in U} \rho_{\tau} (V) - \rho_{\tau} (V \cup \{x\}) \geq \frac{\phi_{\min} (u) (J)}{\phi_{\max} (u) (J)} \frac{1}{u - v} (\rho_{\tau} (V) - \rho_{\tau} (U))$$

A.9 Proof of lemma 4.2

Proof. Let $W, V \subset [p]$ and $W \neq V$. Define $U = W \cup V$ and $u - v \geq 1$. Since $u - v = |W \cup V| - v \leq w$, we have $\frac{\phi_{\min} (u) (J)}{\phi_{\max} (u) (J)} \geq \frac{\phi_{\min} (w + v) (J)}{\phi_{\max} (w + v) (J)}$ and $\phi_{\max} (u) (J) \leq \phi_{\max} (w + v) (J)$. Therefore, $\frac{\phi_{\min} (u) (J)}{\phi_{\max} (u) (J)} \geq \frac{\phi_{\min} (w + v) (J)}{\phi_{\max} (w + v) (J)}$ and we have

$$\frac{\phi_{\min} (u) (J)}{\phi_{\max} (u) (J)} \frac{1}{u - v} (\rho_{\tau} (V) - \rho_{\tau} (U))$$

$$\geq \frac{\phi_{\min} (w + v) (J)}{\phi_{\max} (w + v) (J)} \frac{1}{w} (\rho_{\tau} (V) - \rho_{\tau} (U))$$

$$\geq \frac{\phi_{\min} (w + v) (J)}{\phi_{\max} (w + v) (J)} \frac{1}{w} (\rho_{\tau} (V) - \rho_{\tau} (W))$$
Multiplying both sides by \(-1 - \kappa\), adding \(\rho_r (V) - \rho_r (W)\) and using lemma 5, we obtain

\[
\left(1 - (1 - \kappa) \frac{\phi_{\min} (w + v) (J) 1}{\phi_{\max} (w + v) (J) w} \right) \left(\rho_r (V) - \rho_r (W) \right) \\
\geq \rho_r (V) - \rho_r (W) - (1 - \kappa) \frac{\phi_{\min} (u) (J) 1}{\phi_{\max} (u) (J) u - v} \left(\rho_r (V) - \rho_r (U) \right) \\
\geq \rho_r (V) - \rho_r (W) - (1 - \kappa) \max_{\{j\} \in U} \rho_r (V) - \rho_r (V \cup \{j\}) \\
\geq \rho_r (V) - \rho_r (W) - (1 - \kappa) \max_{\{j\} \in [P]} \rho_r (V) - \rho_r (V \cup \{j\})
\]

Suppose \(\rho_r (U_K) \geq \rho_r (W)\). Otherwise, the statement holds automatically. We have

\[
\rho_r (U_K) - \rho_r (W) = \rho_r (U_{K-1}) - \rho_r (W) - (\rho_r (U_{K-1}) - \rho_r (U_K)) \\
\leq \rho_r (U_{K-1}) - \rho_r (W) - (1 - \kappa) \max_{j \in [P]} \rho_r (U_{k-1}) - \rho_r (U_k \cup \{j\}) \\
\leq \left(1 - (1 - \kappa) \frac{\phi_{\min} (w + K - 1) (J) 1}{\phi_{\max} (w + K - 1) (J) w} \right) \left(\rho_r (U_{K-1}) - \rho_r (W) \right)
\]

Repeatedly, we can obtain

\[
\rho_r (U_K) - \rho_r (W) \\
\leq \left(1 - (1 - \kappa) \frac{\phi_{\min} (w + K - 1) (J) 1}{\phi_{\max} (w + K - 1) (J) w} \right) \left(\rho_r (U_{K-1}) - \rho_r (W) \right) \\
\leq \left(1 - (1 - \kappa) \frac{\phi_{\min} (w + K - 1) (J) 1}{\phi_{\max} (w + K - 1) (J) w} \right) \left(1 - (1 - \kappa) \frac{\phi_{\min} (w + K - 2) (J) 1}{\phi_{\max} (w + K - 2) (J) w} \right) \left(\rho_r (U_{K-2}) - \rho_r (W) \right) \\
\vdots \\
\leq \prod_{k=1}^{K-1} \left(1 - (1 - \kappa) \frac{\phi_{\min} (w + k) (J) 1}{\phi_{\max} (w + k) (J) w} \right) \left(\rho_r (U_1) - \rho_r (W) \right) \\
\leq \left(1 - (1 - \kappa) \frac{\phi_{\min} (w + K) (J) 1}{\phi_{\max} (w + K) (J) w} \right)^K \left(\rho_r (\emptyset) - \rho_r (W) \right) \\
\leq \rho_r (\emptyset) \left(1 - (1 - \kappa) \frac{\phi_{\min} (w + K) (J) 1}{\phi_{\max} (w + K) (J) w} \right)^K
\]

where we use the assumption that \(\phi_{\min} (x) (J)\) is monotonically decreasing in \(x\) and \(\phi_{\max} (x) (J)\) is monotonically increasing in \(x\).
A.10 Proof of theorem 4.2

Proof. Note that

\[
\frac{1}{n} \sum_{i=1}^{n} \rho_{\hat{S}}(y_i - x_{i,S}^{T} \hat{\beta}_{\hat{S}}) - E \rho_{\hat{S}}(y_i - x_{i,S_{0}}^{T} \beta_{S_{0}})
\]

\[
= \frac{1}{n} \sum_{i=1}^{n} \rho_{\hat{S}}(y_i - x_{i,S}^{T} \hat{\beta}_{\hat{S}}) - E \rho_{\hat{S}}(y_i - x_{i,S}^{T} \beta_{S}) + E \rho_{\hat{S}}(y_i - x_{i,S}^{T} \beta_{\hat{S}}) - E \rho_{\hat{S}}(y_i - x_{i,S_{0}}^{T} \beta_{S_{0}})
\]

\[:= T_{1} + T_{2} \]

For \(T_{1} \), using corollary 4.1, we know \(\frac{1}{n} \sum_{i=1}^{n} \rho_{\hat{S}}(y_i - x_{i,S}^{T} \hat{\beta}_{\hat{S}}) - E \rho_{\hat{S}}(y_i - x_{i,S}^{T} \beta_{S}) = O_{p} \left(\sqrt{\frac{K^{2} \log p}{n}} \right) \) = \(o_{p}(1) \).

For \(T_{2} \), we denote \(\zeta_{k} = \max \{ \hat{\rho}(U_{k}) - \rho_{\hat{S}}(U_{k}) \} \) where \(U_{k} = \{ U \subseteq [p], |U| \leq r \} \) and define a collection of sets

\[A_{k}(\kappa) = \left\{ V \subset [p] : |V| = k, \max_{j \in [p]} \rho_{\hat{S}}(V) - \rho_{\hat{S}}(V \cup \{ j \}) > \frac{4\zeta_{k}}{\kappa} \right\} \]

We also denote \(\hat{j} = \arg \max_{j \in [p]} \hat{\rho}(V) - \hat{\rho}(V \cup \{ j \}) \). Suppose \(\hat{U}_{k} \in A_{k}(\kappa) \) for all \(2 \leq k \leq K \), then we have

\[
\rho_{\hat{S}} \left(\hat{U}_{k-1} \right) - \rho_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right)
\]

\[\geq \hat{\rho}_{\hat{S}} \left(\hat{U}_{k-1} \right) - \hat{\rho}_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right) - \left| \rho_{\hat{S}} \left(\hat{U}_{k-1} \right) - \rho_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right) \right| - \left(\rho_{\hat{S}} \left(\hat{U}_{k-1} \right) - \rho_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right) \right)
\]

\[\geq \max_{j \in [p]} \hat{\rho}_{\hat{S}} \left(\hat{U}_{k-1} \right) - \hat{\rho}_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right) - 2\zeta_{k}
\]

\[\geq \max_{j \in [p]} \left\{ \rho_{\hat{S}} \left(\hat{U}_{k-1} \right) - \rho_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right) \right\} - \left| \rho_{\hat{S}} \left(\hat{U}_{k-1} \right) - \rho_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right) \right| - \left(\rho_{\hat{S}} \left(\hat{U}_{k-1} \right) - \rho_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right) \right)
\]

\[- 2\zeta_{k}
\]

\[\geq \max_{j \in [p]} \rho_{\hat{S}} \left(\hat{U}_{k-1} \right) - \rho_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right) - 4\zeta_{k}
\]

\[> (1 - \kappa) \max_{j \in [p]} \rho_{\hat{S}} \left(\hat{U}_{k-1} \right) - \rho_{\hat{S}} \left(\hat{U}_{k-1} \cup \{ j \} \right)
\]

where the last inequality follows by the definition of \(A_{k}(\kappa) \). Therefore, we know \(\{ \hat{U}_{1}, \ldots, \hat{U}_{K} \} \in U_{K}(\kappa) \). Using lemma 6, we have

\[\rho_{\hat{S}} \left(\hat{U}_{K} \right) - \rho_{\hat{S}} \left(U_{0} \right) \leq \rho_{\hat{S}} (\emptyset) \left(1 - (1 - \kappa) \frac{\phi_{\min (s_{0} + K)} (J)}{\phi_{\max (s_{0} + K)} (J) w} \right)^{K} \to 0
\]

when the event \(\{ \hat{U}_{1}, \ldots, \hat{U}_{K} \} \in U_{K}(\kappa) \) occurs with \(\frac{s_{0}}{K} \to 0 \) as \(K \to \infty \) and \(p \to \infty \).
Suppose there exist \(\hat{U}_k \notin A_k (\kappa) \) for some \(2 \leq k \leq K \). We denote \(\tilde{k} = \min_{1 \leq k \leq K} \left\{ \hat{U}_k \notin A_k (\kappa) \right\} \).

By the definition of \(A_k (\kappa) \), we have \(\max_{j \in [p]} \rho_r \left(\hat{U}_k \right) - \rho_r \left(\hat{U}_k \cup \{ j \} \right) \leq \frac{4K}{\kappa} \).

Suppose \(U^* \subset \hat{U}_k \), by monotonicity of \(\rho_r \), we have \(\rho_r \left(\hat{U}_K \right) \leq \rho_r \left(\hat{U}_k \right) \leq \rho_r \left(U^* \right) \). Otherwise, using lemma 4, 5 and the assumptions on \(\phi_\min (x) (J) \) and \(\phi_\max (x) (J) \), we can obtain

\[
\rho_r \left(\hat{U}_K \right) - \rho_r \left(U^* \right) \leq \rho_r \left(\hat{U}_k \right) - \rho_r \left(U^* \right) \\
\leq \rho_r \left(\hat{U}_k \right) - \rho_r \left(\hat{U}_k \cup \{ j \} \right) \\
\leq \frac{\phi_\max \left(s_0 + K \right) (J)}{\phi_\min \left(s_0 + K \right) (J)} \frac{\max \rho_r \left(\hat{U}_k \right) - \rho_r \left(\hat{U}_k \cup \{ j \} \right)}{\max \rho_r \left(\hat{U}_k \right) - \rho_r \left(\hat{U}_k \cup \{ j \} \right)} \\
\leq \frac{\phi_\max \left(s_0 + K \right) (J) 4\tilde{k}}{\phi_\min \left(s_0 + K \right) (J) \kappa} \\
= \frac{\phi_\max \left(s_0 + K \right) (J) 4K\tilde{k} s_0}{\phi_\min \left(s_0 + K \right) (J) K} \\
= O_p \left(\sqrt{\frac{s_0^2 K^2 \log p}{n}} \right) \\
= o_p (1)
\]

where last \(o_p (1) \) is from the condition in theorem 4.2.

Combining the results above, we have \(\frac{1}{n} \sum_{i=1}^{n} \rho_r \left(y_i - x_{i,S}^T \hat{\beta}_S \right) - E \rho_r \left(y_i - x_{i,S_0}^T \beta_{S_0} \right) = o_p (1) \).

So theorem 4 holds.

B Testing-based quantile forward selection

Based on the previous simple quantile forward selection algorithm, we incorporate the hypothesis testing procedure in the selection of covariate. In every step, with previous selected set \(S \), the null hypothesis is defined as follows

\[H_0 : f \left(S \cup \{ j \} \right) - f \left(S \right) = 0 \]

Given the significance level \(\alpha \), the associated test \(T_{j,S_0} \in \{ 0, 1 \} \) satisfies that if \(T_{j,S_0} = 1 \), then \(H_0 \) is rejected and if \(T_{j,S_0} = 0 \), we fail to reject \(H_0 \). The value of \(T_{j,S_0} \) is determined by test statistics \(W_{j,S} \) for any specific test. In every step, if there are more than one \(T_{j,S_0} = 1 \), the algorithm chooses the variable with the largest \(W_{j,S} \).

The following is the testing-based quantile forward regression algorithm.
Algorithm 3 Testing-based quantile forward regression

1. Set $S_0 = \emptyset$.

2. For $k = 1, 2, \ldots$

 (a) If $T_j S_{k-1} \alpha = 1$ for some $j \in [p] \setminus S_{k-1}$

 i. Select the variable index

 $$s = \arg \max_{j \in [p] \setminus S_{k-1}} \{W_j S_{k-1} \mid T_j S_{k-1} \alpha = 1\}$$

 ii. Set $S_k = S_{k-1} \cup \{s\}$.

 (b) Else, break the algorithm

3. Return $\hat{S} = S_K$ with step K, satisfying $T_j \hat{S} \alpha = 0$ for all $j \in [p] \setminus \hat{S}$, and the corresponding estimator $\hat{\beta}_{\hat{S}}$.

Since we are using traditional hypothesis testing procedure to choose variables we need in every step, some regular assumptions on the tests needs to be satisfied. These regular assumptions are similar with the condition 2 in Kozbur (2020).

Assumption 7. The test T satisfies the following conditions. There exists an integer $K_{test} > s_0$ and some constants $\alpha, \delta_{test}, c_{test}^{'}, c_{test}^{''} > 0$ such that

1. For all j, the test T has power

 $$P(T_j S_0 = 1, |S| \leq K_{test} \text{ such that } f(S \cup \{j\}) - f(S) > c_{test}) \geq 1 - \frac{\delta_{test}}{3}$$

 (a) For some j, the test T can control the size

 $$P(T_j S_0 = 1, |S| \leq K_{test} \text{ such that } f(S \cup \{j\}) - f(S) \leq c_{test}') \leq \alpha + \frac{\delta_{test}}{3}$$

 (b) For all j, k, the test T is continuous

 $$P\{f(S \cup \{j\}) - f(S) \geq c_{test}'' (f(S \cup \{k\}) - f(S)), \quad |S| \leq K_{test} \text{ such that } T_j S_0 = 1 \text{ and } W_j S \geq W_k S\} \leq 1 - \frac{\delta_{test}}{3}$$

Under those assumptions above, we shall show the following theorem to control the l_2-bound and quantile loss bound for prediction error.

Theorem B.1. Under the assumptions and algorithm 3 above, we have the following l_2 prediction bound

$$E\left(\left\|X^T \beta - X^T \beta_0\right\|^2\right)^{\frac{1}{2}} \leq \sqrt{K + s_0} \left[\frac{2}{E_0} \left\|EX \psi_T (Y - X^T \beta_0)\right\|_{\infty} + \frac{\phi_{max}(K + s_0)}{\phi_{min}(K + s_0)} (E(XX^T))^{-1} \sqrt{\frac{2}{E_0} \phi_{min}(K + s_0) (J)^c_{test}}\right]$$
In addition, the quantile prediction loss has the same upper bound

$$\rho_\tau \left(X^T \hat{\beta} - X^T \beta_0 \right) \leq \sqrt{K + s_0} \left[\frac{2}{L_0} \left\| E X \psi_\tau \left(Y - X^T \beta_0 \right) \right\|_\infty \right] + \sqrt{\frac{2 \phi_{\max} (K + s_0) (J)}{L_0 \phi_{\min} (K + s_0) (J) c_{\text{test}}}}$$

hold with probability at least $1 - \alpha - \delta_{\text{test}}$.

Proof. Suppose the test T satisfying all three conditions in assumption 5. We denote this event as E. So $P(E) \geq 1 - \alpha - \delta_{\text{test}}$. On this event, similar to the proof of lemma 2 and theorem 2, we replace t by c_{test}. Then we can obtain

$$f(S^*) - f(\hat{S}) \leq \frac{\phi_{\max} (K + s_0) (J)}{\phi_{\min} (K + s_0) (J)} s_0 c_{\text{test}}$$

and

$$E\left(\left(X^T \hat{\beta} - X^T \beta_0 \right)^2 \right)^{\frac{1}{2}} \leq \sqrt{K + s_0} \left[\frac{2}{L_0} \left\| E X \psi_\tau \left(Y - X^T \beta_0 \right) \right\|_\infty \right] + \sqrt{\frac{2 \phi_{\max} (K + s_0) (J)}{L_0 \phi_{\min} (K + s_0) (J) c_{\text{test}}}}$$

In addition, the quantile prediction loss bound follows naturally from the l_2 bound.

C Additional results

C.1 Additional application results in the international growth rate example

The following table 8 contains the covariate selection result for all τ varying from 0.05 to 0.95. It shows a clear pattern that black market premium exists in all lower quantile levels while total gross enrollment ratio for primary education appears in all upper quantile levels.
Table 8: Variable selection result for the international growth example with K-step quantile forward regression (Real per capita GDP (log) is always included)

<table>
<thead>
<tr>
<th>τ</th>
<th>Additional variables selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>Population proportion over 64</td>
</tr>
<tr>
<td></td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td></td>
<td>Terms of trade shock</td>
</tr>
<tr>
<td></td>
<td>Percentage of “no schooling” in the male population</td>
</tr>
<tr>
<td></td>
<td>Infant mortality rate</td>
</tr>
<tr>
<td></td>
<td>Ratio of nominal government current expenditure on the defense to nominal GDP</td>
</tr>
<tr>
<td>0.10</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td></td>
<td>Ratio of real domestic investment</td>
</tr>
<tr>
<td>0.15</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td></td>
<td>Ratio of real domestic investment</td>
</tr>
<tr>
<td>0.20</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td>0.25</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td>0.30</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td>0.35</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td>0.40</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td>0.45</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td>0.50</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td>0.55</td>
<td>Black market premium (log)</td>
</tr>
<tr>
<td></td>
<td>Life expectancy</td>
</tr>
<tr>
<td>0.60</td>
<td>Ratio of real government consumption expenditure net of spending on defense and on education to real GDP</td>
</tr>
<tr>
<td>0.65</td>
<td>Infant mortality rate</td>
</tr>
<tr>
<td>0.70</td>
<td>Total gross enrollment ratio for primary education</td>
</tr>
<tr>
<td>0.75</td>
<td>Total gross enrollment ratio for primary education</td>
</tr>
<tr>
<td>0.80</td>
<td>Total gross enrollment ratio for primary education</td>
</tr>
<tr>
<td>0.85</td>
<td>Total gross enrollment ratio for primary education</td>
</tr>
<tr>
<td></td>
<td>Measure of tariff restriction</td>
</tr>
<tr>
<td>0.90</td>
<td>Total gross enrollment ratio for primary education</td>
</tr>
<tr>
<td></td>
<td>Measure of tariff restriction</td>
</tr>
<tr>
<td></td>
<td>Exchange rate</td>
</tr>
<tr>
<td>0.95</td>
<td>Infant mortality rate</td>
</tr>
<tr>
<td></td>
<td>Ratio of domestic investment to real GDP</td>
</tr>
<tr>
<td></td>
<td>Percentage of “no schooling” in the female population</td>
</tr>
<tr>
<td></td>
<td>Total gross enrollment ratio for primary education</td>
</tr>
<tr>
<td></td>
<td>Exchange rate</td>
</tr>
</tbody>
</table>